water homeostasis
Recently Published Documents


TOTAL DOCUMENTS

227
(FIVE YEARS 44)

H-INDEX

35
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Jacek Szczygielski ◽  
Marta Kopańska ◽  
Anna Wysocka ◽  
Joachim Oertel

In the past, water homeostasis of the brain was understood as a certain quantitative equilibrium of water content between intravascular, interstitial, and intracellular spaces governed mostly by hydrostatic effects i.e., strictly by physical laws. The recent achievements in molecular bioscience have led to substantial changes in this regard. Some new concepts elaborate the idea that all compartments involved in cerebral fluid homeostasis create a functional continuum with an active and precise regulation of fluid exchange between them rather than only serving as separate fluid receptacles with mere passive diffusion mechanisms, based on hydrostatic pressure. According to these concepts, aquaporin-4 (AQP4) plays the central role in cerebral fluid homeostasis, acting as a water channel protein. The AQP4 not only enables water permeability through the blood-brain barrier but also regulates water exchange between perivascular spaces and the rest of the glymphatic system, described as pan-cerebral fluid pathway interlacing macroscopic cerebrospinal fluid (CSF) spaces with the interstitial fluid of brain tissue. With regards to this, AQP4 makes water shift strongly dependent on active processes including changes in cerebral microcirculation and autoregulation of brain vessels capacity. In this paper, the role of the AQP4 as the gatekeeper, regulating the water exchange between intracellular space, glymphatic system (including the so-called neurovascular units), and intravascular compartment is reviewed. In addition, the new concepts of brain edema as a misbalance in water homeostasis are critically appraised based on the newly described role of AQP4 for fluid permeation. Finally, the relevance of these hypotheses for clinical conditions (including brain trauma and stroke) and for both new and old therapy concepts are analyzed.


2021 ◽  
pp. 2773-2781
Author(s):  
Pitchaya Matchimakul ◽  
Wanpitak Pongkan ◽  
Piyamat Kongtung ◽  
Raktham Mektrirat

Background and Aim: Aquaporin-2 (AQP2) and arginine vasopressin receptor-2 (AVPR2) are proteins that control water homeostasis in principal cells. Chronic kidney disease (CKD) is defined as the impairment and irreversible loss of kidney function and/or structure, which causes water imbalances and polyuria. The study aimed to know the expression of AQPs and AVPR2 in the kidneys of a canine with CKD. Materials and Methods: The kidneys were collected from two dog carcasses from Small Animal Teaching Hospital, Faculty of Veterinary Medicine, Chiang Mai University. The kidney tissue was prepared for immunohistochemistry and investigated the expression and localization of tissue's AQP2 and AVPR2. For statistical analysis, the Mann–Whitney U-test was applied to the data. Results: By immunohistochemistry, AQP2 was expressed strongly in the basolateral and apical membranes of the principal cells, whereas AVPR2 was localized in the principal cell's basolateral membrane in both renal cortex and renal medulla. In the normal kidney, the semi-quantitative immunohistochemistry for the percentage of protein expression of AQP2 and AVPR2 was 5.062±0.4587 and 4.306±0.7695, respectively. In contrast, protein expression of AQP2 and AVPR2 in CKD was found to be 1.218±0.1719 and 0.8536±0.1396, respectively. The data shows that the percentage of AQP2 and AVPR2 expression was decreased, corresponding to a 4-fold and 5-fold in CKD (p<0.001). Conclusion: Our findings revealed that CKD was a marked decrease in AQP2 and AVPR2 expression. The central role of specific AQP2 and AVPR2 in regulating water homeostasis will provide correlations in case of CKD with polyuria.


Brain ◽  
2021 ◽  
Author(s):  
Mootaz M Salman ◽  
Philip Kitchen ◽  
Andrea Halsey ◽  
Marie Xun Wang ◽  
Susanna Tornroth-Horsefield ◽  
...  

Abstract Aquaporin channels facilitate bidirectional water flow in all cells and tissues. AQP4 is highly expressed in astrocytes. In the CNS, it is enriched in astrocyte endfeet, at synapses, and at the glia limitans, where it mediates water exchange across the blood-spinal cord and blood-brain barriers (BSCB/BBB), and controls cell volume, extracellular space volume, and astrocyte migration. Perivascular enrichment of AQP4 at the BSCB/BBB suggests a role in glymphatic function. Recently, we have demonstrated that AQP4 localization is also dynamically regulated at the subcellular level, affecting membrane water permeability. Ageing, cerebrovascular disease, traumatic CNS injury, and sleep disruption are established and emerging risk factors in developing neurodegeneration, and in animal models of each, impairment of glymphatic function is associated with changes in perivascular AQP4 localization. CNS oedema is caused by passive water influx through AQP4 in response to osmotic imbalances. We have demonstrated that reducing dynamic relocalization of AQP4 to the BSCB/BBB reduces CNS oedema, and accelerates functional recovery in rodent models. Given the difficulties in developing pore-blocking AQP4 inhibitors, targeting AQP4 subcellular localization opens up new treatment avenues for CNS oedema, neurovascular and neurodegenerative diseases, and provides a framework to address fundamental questions about water homeostasis in health and disease.


2021 ◽  
Vol 8 ◽  
Author(s):  
Murad Kheetan ◽  
Iheanyichukwu Ogu ◽  
Joseph I. Shapiro ◽  
Zeid J. Khitan

Hyponatremia is the most common electrolyte disorder in clinical practice. Catastrophic complications can occur from severe acute hyponatremia and from inappropriate management of acute and chronic hyponatremia. It is essential to define the hypotonic state associated with hyponatremia in order to plan therapy. Understanding cerebral defense mechanisms to hyponatremia are key factors to its manifestations and classification and subsequently to its management. Hypotonic hyponatremia is differentiated on the basis of urine osmolality, urine electrolytes and volume status and its treatment is decided based on chronicity and the presence or absence of central nervous (CNS) symptoms. Proper knowledge of sodium and water homeostasis is essential in individualizing therapeutic plans and avoid iatrogenic complications while managing this disorder.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 563
Author(s):  
Nazanin Zamani-Noor ◽  
Johann Hornbacher ◽  
Christel Comel ◽  
Jutta Papenbrock

The present study investigated the changes in total and individual glucosinolates (GSLs) in roots and leaves of different clubroot-resistant and -susceptible oilseed rape cultivars following artificial inoculation with Plasmodiophora brassicae isolates with different virulence. The results showed significant differences in clubroot incidence and severity as well as in the amount of total and individual glucosinolates between oilseed rape cultivars in response to virulence of the pathogen. Single among with total aliphatic and total indolic glucosinolate contents were significantly lower in leaves of susceptible cultivars compared to resistant ones due to the infection. Similarly, single and total aliphatic as well as indolic glucosinolate contents in roots were lower in susceptible cultivars compared to resistant cultivars analyzed. The different isolates of P. brassicae seem to differ in their ability to reduce gluconasturtiin contents in the host. The more aggressive isolate P1 (+) might be able to suppress gluconasturtiin synthesis of the host in a more pronounced manner compared to the isolate P1. A possible interaction of breakdown products of glucobrassicin with the auxin receptor transport inhibitor response 1 (TIR1) is hypothesized and its possible effects on auxin signaling in roots and leaves of resistant and susceptible cultivars is discussed. A potential interplay between aliphatic and indolic glucosinolates that might be involved in water homeostasis in resistant cultivars is explained.


BIOspektrum ◽  
2021 ◽  
Vol 27 (2) ◽  
pp. 165-167
Author(s):  
Sandrine Baltzer ◽  
Enno Klussmann

AbstractVasopressin-mediated water reabsorption from primary urine in the renal collecting duct is essential for regulating body water homeostasis and depends on the water channel aquaporin-2 (AQP2).Dysregulation of the process can cause water balance disorders. Here, we present cell-based high-throughput screenings to identify proteins and small molecules as tools to elucidate molecular mechanisms underlying the AQP2 control and as potential starting points for the development of water balance disorder drugs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gonghui Hu ◽  
Zhen Wang ◽  
Rumin Zhang ◽  
Wenping Sun ◽  
Xiaoyu Chen

The apelin receptor (APJ) is a member of the family A of G-protein-coupled receptors (GPCRs) and is involved in range of physiological and pathological functions, including fluid homeostasis, anxiety, and depression, as well as cardiovascular and metabolic disorders. APJ was classically described as a monomeric transmembrane receptor that forms a ternary complex together with its ligand and associated G proteins. More recently, increasing evidence indicates that APJ may interact with other GPCRs to form heterodimers, which may selectively modulate distinct intracellular signal transduction pathways. Besides, the apelin/APJ system plays important roles in the physiology and pathophysiology of several organs, including regulation of blood pressure, cardiac contractility, angiogenesis, metabolic balance, and cell proliferation, apoptosis, or inflammation. Additionally, the apelin/APJ system is widely expressed in the central nervous system, especially in neurons and oligodendrocytes. This article reviews the role of apelin/APJ in energy metabolism and water homeostasis. Compared with the traditional diuretics, apelin exerts a positive inotropic effect on the heart, while increases water excretion. Therefore, drugs targeting apelin/APJ system undoubtedly provide more therapeutic options for patients with congestive heart failure accompanied with hyponatremia. To provide more precise guidance for the development of clinical drugs, further in-depth studies are warranted on the metabolism and signaling pathways associated with apelin/APJ system.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Eliane F. E. Wenstedt ◽  
Jetta J. Oppelaar ◽  
Stijn Besseling ◽  
Nienke M. G. Rorije ◽  
Rik H. G. Olde Engberink ◽  
...  

Abstract Background By binding to negatively charged polysaccharides called glycosaminoglycans, sodium can be stored in the body—particularly in the skin—without concurrent water retention. Concordantly, individuals with changed glycosaminoglycan structure (e.g. type 1 diabetes (DM1) and hereditary multiple exostosis (HME) patients) may have altered sodium and water homeostasis. Methods We investigated responses to acute (30-min infusion) and chronic (1-week diet) sodium loading in 8 DM1 patients and 7 HME patients in comparison to 12 healthy controls. Blood samples, urine samples, and skin biopsies were taken to investigate glycosaminoglycan sulfation patterns and both systemic and cellular osmoregulatory responses. Results Hypertonic sodium infusion increased plasma sodium in all groups, but more in DM1 patients than in controls. High sodium diet increased expression of nuclear factor of activated t-cells 5 (NFAT5)—a transcription factor responsive to changes in osmolarity—and moderately sulfated heparan sulfate in skin of healthy controls. In HME patients, skin dermatan sulfate, rather than heparan sulfate, increased in response to high sodium diet, while in DM1 patients, no changes were observed. Conclusion DM1 and HME patients show distinct osmoregulatory responses to sodium loading when comparing to controls with indications for reduced sodium storage capacity in DM1 patients, suggesting that intact glycosaminoglycan biosynthesis is important in sodium and water homeostasis. Trial registration These trials were registered with the Netherlands trial register with registration numbers: NTR4095 (https://www.trialregister.nl/trial/3933 at 2013-07-29) and NTR4788 (https://www.trialregister.nl/trial/4645 at 2014-09-12).


Sign in / Sign up

Export Citation Format

Share Document