Generalized 2D principal component analysis for face image representation and recognition

2005 ◽  
Vol 18 (5-6) ◽  
pp. 585-594 ◽  
Author(s):  
Hui Kong ◽  
Lei Wang ◽  
Eam Khwang Teoh ◽  
Xuchun Li ◽  
Jian-Gang Wang ◽  
...  
2015 ◽  
Vol 738-739 ◽  
pp. 643-647
Author(s):  
Qi Zhu ◽  
Jin Rong Cui ◽  
Zi Zhu Fan

In this paper, a matrix based feature extraction and measurement method, i.e.: multi-column principle component analysis (MCPCA) is used to directly and effectively extract features from the matrix. We analyze the advantages of MCPCA over the conventional principal component analysis (PCA) and two-dimensional PCA (2DPCA), and we have successfully applied it into face image recognition. Extensive face recognition experiments illustrate that the proposed method obtains high accuracy, and it is more robust than previous conventional face recognition methods.


2015 ◽  
Vol 15 (01) ◽  
pp. 1550006 ◽  
Author(s):  
Tiene A. Filisbino ◽  
Gilson A. Giraldi ◽  
Carlos E. Thomaz

In the area of multi-dimensional image databases modeling, the multilinear principal component analysis (MPCA) and concurrent subspace analysis (CSA) approaches were independently proposed and applied for mining image databases. The former follows the classical principal component analysis (PCA) paradigm that centers the sample data before subspace learning. The CSA, on the other hand, performs the learning procedure using the raw data. Besides, the corresponding tensor components have been ranked in order to identify the principal tensor subspaces for separating sample groups for face image analysis and gait recognition. In this paper, we first demonstrate that if CSA receives centered input samples and we consider full projection matrices then the obtained solution is equal to the one generated by MPCA. Then, we consider the general problem of ranking tensor components. We examine the theoretical aspects of typical solutions in this field: (a) Estimating the covariance structure of the database; (b) Computing discriminant weights through separating hyperplanes; (c) Application of Fisher criterium. We discuss these solutions for tensor subspaces learned using centered data (MPCA) and raw data (CSA). In the experimental results we focus on tensor principal components selected by the mentioned techniques for face image analysis considering gender classification as well as reconstruction problems.


Author(s):  
SHAOKANG CHEN ◽  
BRIAN C. LOVELL ◽  
TING SHAN

Recognizing faces with uncontrolled pose, illumination, and expression is a challenging task due to the fact that features insensitive to one variation may be highly sensitive to the other variations. Existing techniques dealing with just one of these variations are very often unable to cope with the other variations. The problem is even more difficult in applications where only one gallery image per person is available. In this paper, we describe a recognition method, Adapted Principal Component Analysis (APCA), that can simultaneously deal with large variations in both illumination and facial expression using only a single gallery image per person. We have now extended this method to handle head pose variations in two steps. The first step is to apply an Active Appearance Model (AAM) to the non-frontal face image to construct a synthesized frontal face image. The second is to use APCA for classification robust to lighting and pose. The proposed technique is evaluated on three public face databases — Asian Face, Yale Face, and FERET Database — with images under different lighting conditions, facial expressions, and head poses. Experimental results show that our method performs much better than other recognition methods including PCA, FLD, PRM and LTP. More specifically, we show that by using AAM for frontal face synthesis from high pose angle faces, the recognition rate of our APCA method increases by up to a factor of 4.


2016 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Romi Wiryadinata ◽  
Raya Sagita ◽  
Siswo Wardoyo ◽  
Priswanto Priswanto

<p align="justify">Presensi is a logging attendance, part of activity reporting an institution, or a component institution itself which contains the presence data compiled and arranged so that it is easy to search for and used when required at any time by the parties concerned. Computer application developed in the presensi system is a computer application that can recognize a person's face using only a webcam. Face recognition in this study using a webcam to capture an image of the room at any given time who later identified the existing faces. Some of the methods used in the research here is a method of the Dynamic Times Wrapping (DTW), Principal Component Analysis (PCA) and Gabor Wavelet. This system, used in testing with normal facial image expression. The success rate of the introduction with the normal expression of face image using DTW amounting to 80%, 100% and PCA Gabor wavelet 97%</p>


2019 ◽  
Vol 3 (2) ◽  
pp. 14-20
Author(s):  
Laith R. Fleah ◽  
Shaimaa A. Al-Aubi

Face recognition can represent a key requirement in various types of applications such as human-computer interface, monitoring systems, as well as personal identification. In this paper, design and implement of face recognition system are introduced. In this system, a combination of principal component analysis (PCA) and wavelet feature extraction algorithms with support vector machine (SVM) and K-nearest neighborhood classifier is used. PCA and wavelet transform methods are used to extract features from face image using and identify the image of the face using SVMs classifier as well as the neural network are used as a classifier to compare its results with the proposed system. For a more comprehensive comparison, two face image databases (Yale and ORL) are used to test the performance of the system. Finally, the experimental results show the efficiency and reliability of face recognition system, and the results demonstrate accuracy on two databases indicated that the results enhancement 5% using the SVM classifier with polynomial Kernel function compared to use feedforward neural network classifier.


2012 ◽  
Vol 235 ◽  
pp. 74-78 ◽  
Author(s):  
Jia Jun Zhang ◽  
Li Juan Liang

The background noise influences the face image recognition greatly. It is crucial to remove the noise signals prior to the face image recognition processing. For this purpose, the wavelet de-noising technology has combined with the kernel principal component analysis (KPCA) to identify face images in this paper. The wavelet de-noising technology was firstly used to remove the noise signals. Then the KPCA was employed to extract useful principal components for the face image recognition. By doing so, the dimensionality of the feature space can be reduced effectively and hence the performance of the face image recognition can be enhanced. Lastly, a support vector machine (SVM) classifier was used to recognize the face images. Experimental tests have been conducted to validate and evaluate the proposed method for the face image recognition. The analysis results have showed high performance of the newly proposed method for face image identification.


Sign in / Sign up

Export Citation Format

Share Document