Intravenous administration of human neural stem cells induces functional recovery in Huntington's disease rat model

2005 ◽  
Vol 52 (3) ◽  
pp. 243-249 ◽  
Author(s):  
Soon-Tae Lee ◽  
Kon Chu ◽  
Jung-Eun Park ◽  
Kyungmi Lee ◽  
Lami Kang ◽  
...  
Stem Cells ◽  
2014 ◽  
Vol 32 (2) ◽  
pp. 500-509 ◽  
Author(s):  
Julien Rossignol ◽  
Kyle Fink ◽  
Kendra Davis ◽  
Steven Clerc ◽  
Andrew Crane ◽  
...  

2021 ◽  
Author(s):  
Sandra M. Holley ◽  
Jack C. Reidling ◽  
Carlos Cepeda ◽  
Alice Lau ◽  
Cindy Moore ◽  
...  

AbstractHuntington’s disease (HD), a genetic neurodegenerative disorder, primarily impacts the striatum and cortex with progressive loss of medium-sized spiny neurons (MSNs) and pyramidal neurons, disrupting cortico-striatal circuitry. A promising regenerative therapeutic strategy of transplanting human neural stem cells (hNSCs) is challenged by the need for long-term functional integration. We previously described that hNSCs transplanted into the striatum of HD mouse models differentiated into electrophysiologically active immature neurons, improving behavior and biochemical deficits. Here we show that 8-month implantation of hNSCs into the striatum of zQ175 HD mice ameliorates behavioral deficits, increases brain-derived neurotrophic factor (BDNF) and reduces mutant Huntingtin (mHTT) accumulation. Patch clamp recordings, immunohistochemistry and electron microscopy demonstrates that hNSCs differentiate into diverse neuronal populations, including MSN- and interneuron-like cells. Remarkably, hNSCs receive synaptic inputs, innervate host neurons, and improve membrane and synaptic properties. Overall, the findings support hNSC transplantation for further evaluation and clinical development for HD.


PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e101185 ◽  
Author(s):  
Shuhua Mu ◽  
Jiachuan Wang ◽  
Guangqian Zhou ◽  
Wenda Peng ◽  
Zhendan He ◽  
...  

2009 ◽  
Vol 18 (1) ◽  
pp. 37
Author(s):  
Hwa Lee Ryu ◽  
So Yeon Lee ◽  
Keunwoo Park ◽  
Changhoon Kim ◽  
Byung Kwan Jin ◽  
...  

Neurosurgery ◽  
2015 ◽  
Vol 79 (3) ◽  
pp. 481-491 ◽  
Author(s):  
Alexander E. Ropper ◽  
Xiang Zeng ◽  
Hariprakash Haragopal ◽  
Jamie E. Anderson ◽  
Zaid Aljuboori ◽  
...  

Abstract BACKGROUND There are currently no satisfactory treatments or experimental models showing autonomic dysfunction for intramedullary spinal cord gliomas (ISCG). OBJECTIVE To develop a rat model of ISCG and investigate whether genetically engineered human neural stem cells (F3.hNSCs) could be developed into effective therapies for ISCG. METHODS Immunodeficient/Rowett Nude rats received C6 implantation of G55 human glioblastoma cells (10K/each). F3.hNSCs engineered to express either cytosine deaminase gene only (i.e., F3.CD) or dual genes of CD and thymidine kinase (i.e., F3.CD-TK) converted benign 5-fluorocytosine and ganciclovir into oncolytic 5-fluorouracil and ganciclovir-triphosphate, respectively. ISCG rats received injection of F3.CD-TK, F3.CD, or F3.CD-TK debris near the tumor epicenter 7 days after G55 seeding, followed with 5-FC (500 mg/kg/5 mL) and ganciclovir administrations (25 mg/kg/1 mL/day × 5/each repeat, intraperitoneal injection). Per humane standards for animals, loss of weight-bearing stepping in the hindlimb was used to determine post-tumor survival. Also evaluated were autonomic functions and tumor growth rate in vivo. RESULTS ISCG rats with F3.CD-TK treatment survived significantly longer (37.5 ± 4.78 days) than those receiving F3.CD (21.5 ± 1.75 days) or F3.CD-TK debris (19.3 ± 0.85 days; n = 4/group; P <.05, median rank test), with significantly improved autonomic function and reduced tumor growth rate. F3.DC-TK cells migrated diffusively into ISCG clusters to mediate oncolytic effect. CONCLUSION Dual gene-engineered human neural stem cell regimen markedly prolonged survival in a rat model that emulates somatomotor and autonomic dysfunctions of human cervical ISCG. F3.CD-TK may provide a novel approach to treating clinical ISCG.


2011 ◽  
Vol 33 (3) ◽  
pp. 331-337 ◽  
Author(s):  
Yufeng Jiang ◽  
Hailong Lv ◽  
Shanshan Huang ◽  
Huiping Tan ◽  
Yinong Zhang ◽  
...  

2015 ◽  
Vol 5 (6) ◽  
pp. 1023-1038 ◽  
Author(s):  
Karen L. Ring ◽  
Mahru C. An ◽  
Ningzhe Zhang ◽  
Robert N. O’Brien ◽  
Eliana Marisa Ramos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document