Self-organization process of network structure in a STDP neural network model

2009 ◽  
Vol 65 ◽  
pp. S235
Author(s):  
Norihiro Katayama ◽  
Shohei Yamada ◽  
Akihiro Karashima ◽  
Mitsuyuki Nakao
1997 ◽  
Vol 07 (05) ◽  
pp. 1133-1140 ◽  
Author(s):  
Vladimir E. Bondarenko

The self-organization processes in an analog asymmetric neural network with the time delay were considered. It was shown that in dependence on the value of coupling constants between neurons the neural network produced sinusoidal, quasi-periodic or chaotic outputs. The correlation dimension, largest Lyapunov exponent, Shannon entropy and normalized Shannon entropy of the solutions were studied from the point of view of the self-organization processes in systems far from equilibrium state. The quantitative characteristics of the chaotic outputs were compared with the human EEG characteristics. The calculation of the correlation dimension ν shows that its value is varied from 1.0 in case of sinusoidal oscillations to 9.5 in chaotic case. These values of ν agree with the experimental values from 6 to 8 obtained from the human EEG. The largest Lyapunov exponent λ calculated from neural network model is in the range from -0.2 s -1 to 4.8 s -1 for the chaotic solutions. It is also in the interval from 0.028 s -1 to 2.9 s -1 of λ which is observed in experimental study of the human EEG.


2010 ◽  
Vol 163-167 ◽  
pp. 4213-4217
Author(s):  
Ling Wang ◽  
Li Sun ◽  
Dan Dan Kong ◽  
Xi Yuan Liu

Seismic damage prediction of multistory brick buildings is a multi-factor nonlinear complex problems, this paper analyzed the deficiencies of the traditional methods for predicting the seismic damage, so a prediction model of multistory brick buildings based on RBF Neural Network model is established, RBF network structure elements and parameters are studied and obtained. With examples the research proved that the prediction results are similar to the actual seismic damage to multistory brick buildings by the RBP neural network model, the analytic method and process discussed in this paper can also be applied to seismic damage prediction of brick buildings of urban earthquake disaster prevention planning.


2000 ◽  
Vol 55 (3-4) ◽  
pp. 282-291
Author(s):  
Christoph Bauer ◽  
Thomas Burger ◽  
Martin Stetter ◽  
Elmar W. Lang

Abstract A neural network model with incremental Hebbian learning of afferent and lateral synaptic couplings is proposed,which simulates the activity-dependent self-organization of grating cells in upper layers of striate cortex. These cells, found in areas V1 and V2 of the visual cortex of monkeys, respond vigorously and exclusively to bar gratings of a preferred orientation and periodicity. Response behavior to varying contrast and to an increasing number of bars in the grating show threshold and saturation effects. Their location with respect to the underlying orientation map and their nonlinear response behavior are investigated. The number of emerging grating cells is controlled in the model by the range and strength of the lateral coupling structure.


2020 ◽  
Author(s):  
ZHONGHAO LIU ◽  
Jing Jin ◽  
Yuxin Cui ◽  
Zheng Xiong ◽  
Alireza Nasiri ◽  
...  

Abstract Background: Human leukocyte antigen (HLA) complex molecules play an essential role in immune interactions by presenting peptides on the cell surface to T cells. With significant progress in deep learning, a series of neural network based models have been proposed and demonstrated with their good performances for peptide-HLA class I binding prediction. However, there still lack effective binding prediction models for HLA class II protein binding with peptides due to its inherent challenges. In this work, we present a novel sequence-based pan-specific neural network structure, DeepSeaPanII, for peptide-HLA class II binding prediction. Compared with existing pan-specific models, our model is an end-to-end neural network model without the need for pre- or post-processing on input samples. Results: The leave-one-allele-out cross validation and benchmark evaluation results show that our proposed network model achieved state-of-the-art performance in HLA-II peptide binding. Besides state-of-the-art performance in binding affinity prediction, DeepSeqPanII can also extract biological insight on the binding mechanism over the peptide and HLA sequences by its attention mechanism based binding core prediction capability. Conclusions: In this work, we present a novel neural network structure for peptide-HLA class II binding prediction. It has state-of-the-art performance and could display insightful information it learned benefiting from attention module we carefully designed. Without requiring additional data, this structure could be applied to other related sequence problems. The source code and trained models are freely available at https://github.com/pcpLiu/DeepSeqPanII.


Sign in / Sign up

Export Citation Format

Share Document