Changes in regional brain activities involved in functional recovery after primary motor cortex lesion: PET study with macaque monkeys

2009 ◽  
Vol 65 ◽  
pp. S180-S181
Author(s):  
Yumi Murata ◽  
Noriyuki Higo ◽  
Yukio Nishimura ◽  
Takao Oishi ◽  
Hideo Tsukada ◽  
...  
2019 ◽  
Vol 13 ◽  
Author(s):  
Michela Fregosi ◽  
Alessandro Contestabile ◽  
Simon Badoud ◽  
Simon Borgognon ◽  
Jérôme Cottet ◽  
...  

Author(s):  
Robert Chen ◽  
Leonardo G. Cohen ◽  
Mark Hallett

ABSTRACT:The ipsilateral primary motor cortex (M1) plays a role in voluntary movement. In our studies, we used repetitive transcranial magnetic stimulation (rTMS) to study the effects of transient disruption of the ipsilateral M1 on the performance of finger sequences in right-handed normal subjects. Stimulation of the M1 ipsilateral to the movement induced timing errors in both simple and complex sequences performed with either hand, but with complex sequences, the effects were more pronounced with the left-sided stimulation. Recent studies in both animals and humans have confirmed the traditional view that ipsilateral projections from M1 to the upper limb are mainly directed to truncal and proximal muscles, with little evidence for direct connections to distal muscles. The ipsilateral motor pathway appears to be an important mechanism for functional recovery after focal brain injury during infancy, but its role in functional recovery for older children and adults has not yet been clearly demonstrated. There is increasing evidence from studies using different methodologies such as rTMS, functional imaging and movement-related cortical potentials, that M1 is involved in ipsilateral hand movements, with greater involvement in more complex tasks and the left hemisphere playing a greater role than the right.


2011 ◽  
Vol 217 (1) ◽  
pp. 63-79 ◽  
Author(s):  
Shahid Bashir ◽  
Mélanie Kaeser ◽  
Alexander Wyss ◽  
Adjia Hamadjida ◽  
Yu Liu ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Taihei Ninomiya ◽  
Ken-ichi Inoue ◽  
Eiji Hoshi ◽  
Masahiko Takada

AbstractThe primate frontal lobe processes diverse motor information in parallel through multiple motor-related areas. For example, the supplementary motor area (SMA) is mainly involved in internally-triggered movements, whereas the premotor cortex (PM) is highly responsible for externally-guided movements. The primary motor cortex (M1) deals with both aspects of movements to execute a single motor behavior. To elucidate how the cortical motor system is structured to process a variety of information, the laminar distribution patterns of signals were examined between SMA and M1, or PM and M1 in macaque monkeys by using dual anterograde tract-tracing. Dense terminal labeling was observed in layers 1 and upper 2/3 of M1 after one tracer injection into SMA, another tracer injection into the dorsal division of PM resulted in prominent labeling in the deeper portion of layer 2/3. Weaker labeling was also visible in layer 5 in both cases. On the other hand, inputs from M1 terminated in both the superficial and the deep layers of SMA and PM. The present data indicate that distinct types of motor information are arranged in M1 in a layer-specific fashion to be orchestrated through a microcircuit within M1.


Sign in / Sign up

Export Citation Format

Share Document