Assessment of the cerebral cortex during motor task behaviours in adults: A systematic review of functional near infrared spectroscopy (fNIRS) studies

NeuroImage ◽  
2011 ◽  
Vol 54 (4) ◽  
pp. 2922-2936 ◽  
Author(s):  
Daniel Richard Leff ◽  
Felipe Orihuela-Espina ◽  
Clare E. Elwell ◽  
Thanos Athanasiou ◽  
David T. Delpy ◽  
...  
2016 ◽  
Vol 22 (1) ◽  
pp. 46-68 ◽  
Author(s):  
Valentina Quaresima ◽  
Marco Ferrari

Upon adequate stimulation, real-time maps of cortical hemodynamic responses can be obtained by functional near-infrared spectroscopy (fNIRS), which noninvasively measures changes in oxygenated and deoxygenated hemoglobin after positioning multiple sources and detectors over the human scalp. This review is aimed at giving a concise and simple overview of the basic principles of fNIRS including features, strengths, advantages, limitations, and utility for evaluating human behavior. The transportable/wireless commercially available fNIRS systems have a time resolution of 1 to 10 Hz, a depth sensitivity of about 1.5 cm, and a spatial resolution up to 1 cm. fNIRS has been found suitable for many applications on human beings, either adults or infants/children, in the field of social sciences, neuroimaging basic research, and medicine. Some examples of present and future prospects of fNIRS for assessing cerebral cortex function during human behavior in different situations (in natural and social situations) will be provided. Moreover, the most recent fNIRS studies for investigating interpersonal interactions by adopting the hyperscanning approach, which consists of the measurement of brain activity simultaneously on two or more people, will be reported.


2018 ◽  
Vol 1 (3) ◽  
pp. 107-113 ◽  
Author(s):  
Lei Zhu ◽  
Shuguang Li ◽  
Yaohua Li ◽  
Min Wang ◽  
Yanyu Li ◽  
...  

PurposeCooperative driving refers to a notion that intelligent system sharing controlling with human driver and completing driving task together. One of the key technologies is that the intelligent system can identify the driver’s driving intention in real time to implement consistent driving decisions. The purpose of this study is to establish a driver intention prediction model.Design/methodology/approachThe authors used the NIRx device to measure the cerebral cortex activities for identifying the driver’s braking intention. The experiment was carried out in a virtual reality environment. During the experiment, the driving simulator recorded the driving data and the functional near-infrared spectroscopy (fNIRS) device recorded the changes in hemoglobin concentration in the cerebral cortex. After the experiment, the driver’s braking intention identification model was established through the principal component analysis and back propagation neural network.FindingsThe research results showed that the accuracy of the model established in this paper was 80.39 per cent. And, the model could identify the driver’s braking intent prior to his braking operation.Research limitations/implicationsThe limitation of this study was that the experimental environment was ideal and did not consider the surrounding traffic. At the same time, other actions of the driver were not taken into account when establishing the braking intention recognition model. Besides, the verification results obtained in this paper could only reflect the results of a few drivers’ identification of braking intention.Practical implicationsThis study can be used as a reference for future research on driving intention through fNIRS, and it also has a positive effect on the research of brain-controlled driving. At the same time, it has developed new frontiers for intention recognition of cooperative driving.Social implicationsThis study explores new directions for future brain-controlled driving and wheelchairs.Originality/valueThe driver’s driving intention was predicted through the fNIRS device for the first time.


2020 ◽  
Vol 29 (3) ◽  
pp. 1674-1701 ◽  
Author(s):  
Lindsay K. Butler ◽  
Swathi Kiran ◽  
Helen Tager-Flusberg

Purpose Functional brain imaging is playing an increasingly important role in the diagnosis and treatment of communication disorders, yet many populations and settings are incompatible with functional magnetic resonance imaging and other commonly used techniques. We conducted a systematic review of neuroimaging studies using functional near-infrared spectroscopy (fNIRS) with individuals with speech or language impairment across the life span. We aimed to answer the following question: To what extent has fNIRS been used to investigate the neural correlates of speech-language impairment? Method This systematic review was preregistered with PROSPERO, the international prospective register of systematic reviews (CRD42019136464). We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol for preferred reporting items for systematic reviews. The database searches were conducted between February and March of 2019 with the following search terms: (a) fNIRS or functional near-infrared spectroscopy or NIRS or near-infrared spectroscopy, (b) speech or language, and (c) disorder or impairment or delay. Results We found 34 fNIRS studies that involved individuals with speech or language impairment across nine categories: (a) autism spectrum disorders; (b) developmental speech and language disorders; (c) cochlear implantation and deafness; (d) dementia, dementia of the Alzheimer's type, and mild cognitive impairment; (e) locked-in syndrome; (f) neurologic speech disorders/dysarthria; (g) stroke/aphasia; (h) stuttering; and (i) traumatic brain injury. Conclusions Though it is not without inherent challenges, fNIRS may have advantages over other neuroimaging techniques in the areas of speech and language impairment. fNIRS has clinical applications that may lead to improved early and differential diagnosis, increase our understanding of response to treatment, improve neuroprosthetic functioning, and advance neurofeedback.


Motor Control ◽  
2019 ◽  
Vol 23 (4) ◽  
pp. 498-517 ◽  
Author(s):  
Manuel E. Hernandez ◽  
Erin O’Donnell ◽  
Gioella Chaparro ◽  
Roee Holtzer ◽  
Meltem Izzetoglu ◽  
...  

Functional near-infrared spectroscopy was used to evaluate prefrontal cortex activation differences between older adults with multiple sclerosis (MS) and healthy older adults (HOA) during the performance of a balance- and attention-demanding motor task. Ten older adults with MS and 12 HOA underwent functional near-infrared spectroscopy recording while talking, virtual beam walking, or virtual beam walking while talking on a self-paced treadmill. The MS group demonstrated smaller increases in prefrontal cortex oxygenation levels than HOA during virtual beam walking while talking than talking tasks. These findings indicate a decreased ability to allocate additional attentional resources in challenging walking conditions among MS compared with HOA. This study is the first to investigate brain activation dynamics during the performance of balance- and attention-demanding motor tasks in persons with MS.


Sign in / Sign up

Export Citation Format

Share Document