Evidence for conceptual combination in the left anterior temporal lobe

NeuroImage ◽  
2011 ◽  
Vol 55 (4) ◽  
pp. 1847-1852 ◽  
Author(s):  
Sean G. Baron ◽  
Daniel Osherson
2021 ◽  
pp. 1-61
Author(s):  
Alicia Parrish ◽  
Liina Pylkkänen

Abstract The relationship between syntactic, semantic, and conceptual processes in language comprehension is a central question to the neurobiology of language. Several studies have suggested that conceptual combination in particular can be localized to the left anterior temporal lobe (LATL), while syntactic processes are more often associated with the posterior temporal lobe or inferior frontal gyrus. However, LATL activity can also correlate with syntactic computations, particularly in narrative comprehension. Here we investigated the degree to which LATL conceptual combination is dependent on syntax, specifically asking whether rapid (∼200 ms) magnetoencephalography effects of conceptual combination in the LATL can occur in the absence of licit syntactic phrase closure and in the absence of a semantically plausible output for the composition. We find that such effects do occur: LATL effects of conceptual combination were observed even when there was no syntactic phrase closure or plausible meaning. But syntactic closure did have an additive effect such that LATL signals were the highest for expressions that composed both conceptually and syntactically. Our findings conform to an account in which LATL conceptual composition is influenced by local syntactic composition but is also able to operate without it.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yoko Mase ◽  
Yoshitsugu Matsui ◽  
Eriko Uchiyama ◽  
Hisashi Matsubara ◽  
Masahiko Sugimoto ◽  
...  

Abstract Background Acquired color anomalies caused by cerebral trauma are classified as either achromatopsias or dyschromatopsias (Zeki, Brain 113:1721–1777, 1990). The three main brain regions stimulated by color are V1, the lingual gyrus, which was designated as human V4 (hV4), and the fusiform gyrus, designated as V4α. (Zeki, Brain 113:1721–1777, 1990). An acquired cerebral color anomaly is often accompanied by visual field loss (hemi- and quadrantanopia), facial agnosia, prosopagnosia, visual agnosia, and anosognosia depending on the underlying pathology (Bartels and Zeki, Eur J Neurosci 12:172–193, 2000), (Meadows, Brain 97:615–632, 1974), (Pearman et al., Ann Neurol 5:253–261, 1979). The purpose of this study was to determine the characteristics of a patient who developed dyschromatopsia following a traumatic injury to her brain. Case presentation The patient was a 24-year-old woman who had a contusion to her right anterior temporal lobe. After the injury, she noticed color distortion and that blue objects appeared green in the left half of the visual field. Although conventional color vision tests did not detect any color vision abnormalities, short wavelength automated perimetry (SWAP) showed a decrease in sensitivity consistent with a left hemi-dyschromatopsia. Magnetic resonance imaging (MRI) detected abnormalities in the right fusiform gyrus, a part of the anterior temporal lobe. At follow-up 14 months later, subjective symptoms had disappeared, but the SWAP abnormalities persisted and a thinning of the sectorial ganglion cell complex (GCC) was detected. Conclusion The results indicate that although the subjective symptoms resolved early, a reduced sensitivity of SWAP remained and the optical coherence tomography (OCT) showed GCC thinning. We conclude that local abnormalities in the anterior section of fusiform gyrus can cause mild cerebral dyschromatopsia without other symptoms. These findings indicate that it is important to listen to the symptoms of the patient and perform appropriate tests including the SWAP and OCT at the early stage to objectively prove the presence of acquired cerebral color anomaly.


2011 ◽  
Vol 26 (8) ◽  
pp. 739-745 ◽  
Author(s):  
R. M. Busch ◽  
M. F. Dulay ◽  
K. H. Kim ◽  
J. S. Chapin ◽  
L. Jehi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document