scholarly journals Conceptual combination in the LATL with and without syntactic composition

2021 ◽  
pp. 1-61
Author(s):  
Alicia Parrish ◽  
Liina Pylkkänen

Abstract The relationship between syntactic, semantic, and conceptual processes in language comprehension is a central question to the neurobiology of language. Several studies have suggested that conceptual combination in particular can be localized to the left anterior temporal lobe (LATL), while syntactic processes are more often associated with the posterior temporal lobe or inferior frontal gyrus. However, LATL activity can also correlate with syntactic computations, particularly in narrative comprehension. Here we investigated the degree to which LATL conceptual combination is dependent on syntax, specifically asking whether rapid (∼200 ms) magnetoencephalography effects of conceptual combination in the LATL can occur in the absence of licit syntactic phrase closure and in the absence of a semantically plausible output for the composition. We find that such effects do occur: LATL effects of conceptual combination were observed even when there was no syntactic phrase closure or plausible meaning. But syntactic closure did have an additive effect such that LATL signals were the highest for expressions that composed both conceptually and syntactically. Our findings conform to an account in which LATL conceptual composition is influenced by local syntactic composition but is also able to operate without it.

2020 ◽  
Vol 32 (1) ◽  
pp. 36-49 ◽  
Author(s):  
Jin Wang ◽  
Mabel L. Rice ◽  
James R. Booth

Previous studies have found specialized syntactic and semantic processes in the adult brain during language comprehension. Young children have sophisticated semantic and syntactic aspects of language, yet many previous fMRI studies failed to detect this specialization, possibly due to experimental design and analytical methods. In this current study, 5- to 6-year-old children completed a syntactic task and a semantic task to dissociate these two processes. Multivoxel pattern analysis was used to examine the correlation of patterns within a task (between runs) or across tasks. We found that the left middle temporal gyrus showed more similar patterns within the semantic task compared with across tasks, whereas there was no difference in the correlation within the syntactic task compared with across tasks, suggesting its specialization in semantic processing. Moreover, the left superior temporal gyrus showed more similar patterns within both the semantic task and the syntactic task as compared with across tasks, suggesting its role in integration of semantic and syntactic information. In contrast to the temporal lobe, we did not find specialization or integration effects in either the opercular or triangular part of the inferior frontal gyrus. Overall, our study showed that 5- to 6-year-old children have already developed specialization and integration in the temporal lobe, but not in the frontal lobe, consistent with developmental neurocognitive models of language comprehension in typically developing young children.


2020 ◽  
pp. 253-259
Author(s):  
Edmund T. Rolls

The inferior and middle temporal gyri are involved visual object recognition, with the more dorsal areas involved in face expression, gesture, and motion representation that is useful in social behaviour. The superior temporal cortex is involved in auditory processing. The anterior temporal lobe is involved in semantic representations, for example information about objects, people, and places. Network mechanisms involved in semantic representations are described. The output of this system reaches the inferior frontal gyrus, which on the left is Broca’s area, involved in language production. The concept that the semantics for language are computed in the anterior temporal lobe, and communicates with Broca’s area for speech production, is introduced.


2015 ◽  
Vol 27 (3) ◽  
pp. 464-473 ◽  
Author(s):  
Robert S. Hurley ◽  
Borna Bonakdarpour ◽  
Xue Wang ◽  
M.-Marsel Mesulam

The anterior temporal lobe (ATL) sits at the confluence of auditory, visual, olfactory, transmodal, and limbic processing hierarchies. In keeping with this anatomical heterogeneity, the ATL has been implicated in numerous functional domains, including language, semantic memory, social cognition, and facial identification. One question that has attracted considerable discussion is whether the ATL contains a mosaic of differentially specialized areas or whether it provides a domain-independent amodal hub. In the current study, based on task-free fMRI in right-handed neurologically intact participants, we found that the left lateral ATL is interconnected with hubs of the temporosylvian language network, including the inferior frontal gyrus and middle temporal gyrus of the ipsilateral hemisphere and, to a lesser extent, with homotopic areas of the contralateral hemisphere. In contrast, the right lateral ATL had much weaker functional connectivity with these regions in either hemisphere. Together with evidence that has been gathered in lesion-mapping and event-related neuroimaging studies, this asymmetry of functional connectivity supports the inclusion of the left ATL within the language network, a relationship that had been overlooked by classic aphasiology. The asymmetric domain selectivity for language of the left ATL, together with the absence of such an affiliation in the right ATL, is inconsistent with a strict definition of domain-independent amodal functionality in this region of the brain.


2019 ◽  
Author(s):  
Thomas Cope ◽  
Yury Shtyrov ◽  
Lucy MacGregor ◽  
Rachel Holland ◽  
Friedemann Pulvermüller ◽  
...  

AbstractIn the healthy human brain, the processing of spoken words is strongly left-lateralised, while the processing of complex non-linguistic sounds recruits brain regions bilaterally. Here we asked whether the left anterior temporal lobe, strongly implicated in semantic processing, is critical to this special treatment of linguistic stimuli. Nine patients with semantic dementia (SD) and fourteen age-matched controls underwent magnetoencephalography and structural MRI. Voxel based morphometry demonstrated the stereotypical pattern of SD: severe grey matter loss restricted to the left anterior temporal lobe. During magnetoencephalography, participants listened to word sets in which identity and meaning were ambiguous until utterance completion, for example played vs plate. Whereas left-hemispheric responses were similar across groups, patients demonstrated increased right hemisphere activity 174-294ms after stimulus disambiguation. Source reconstructions confirmed recruitment of right-sided analogues of language regions in SD: atrophy of left anterior temporal lobe was associated with increased activity in right temporal pole, middle temporal gyrus, inferior frontal gyrus and supramarginal gyrus. Moreover only healthy controls had differential responses to words versus non-words in right auditory cortex and planum temporale. Overall, the results indicate that anterior temporal lobe is necessary for normal and efficient processing of word identity in the rest of the language network.


2019 ◽  
Author(s):  
Seyedeh-Rezvan Farahibozorg ◽  
Richard N. Henson ◽  
Anna M. Woollams ◽  
Olaf Hauk

AbstractIt is now well recognised that human semantic knowledge is supported by a large neural network distributed over multiple brain regions, but the dynamic organisation of this network remains unknown. Some studies have proposed that a central semantic hub coordinates this network. We explored the possibility of different types of semantic hubs; namely “representational hubs”, whose neural activity is modulated by semantic variables, and “connectivity hubs”, whose connectivity to distributed areas is modulated by semantic variables. We utilised the spatio-temporal resolution of source-estimated Electro-/Magnetoencephalography data in a word-concreteness task (17 participants, 12 female) in order to: (i) find representational hubs at different timepoints based on semantic modulation of evoked brain activity in source space; (ii) identify connectivity hubs among left Anterior Temporal Lobe (ATL), Angular Gyrus (AG), Middle Temporal Gyrus and Inferior Frontal Gyrus based on their functional connectivity to the whole cortex, in particular sensory-motor-limbic systems; and (iii) explicitly compare network models with and without an intermediate hub linking sensory input to other candidate hub regions using Dynamic Causal Modelling (DCM) of evoked responses. ATL’s activity was modulated as early as 150ms post-stimulus, while both ATL and AG showed modulations of functional connectivity with sensory-motor-limbic areas from 150-450ms. DCM favoured models with one intermediate hub, namely ATL in an early time window and AG in a later time-window. Our results support ATL as a single representational hub with an early onset, but suggest that both ATL and AG function as connectivity hubs depending on the stage of semantic processing.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Tobias Pflugshaupt ◽  
Daniel Bauer ◽  
Julia Frey ◽  
Tim Vanbellingen ◽  
Brigitte C Kaufmann ◽  
...  

Abstract Cognitive estimation is a mental ability applied to solve numerical problems when precise facts are unknown, unavailable or impractical to calculate. It has been associated with several underlying cognitive components, most often with executive functions and semantic memory. Little is known about the neural correlates of cognitive estimation. To address this issue, the present cross-sectional study applied lesion-symptom mapping in a group of 55 patients with left hemineglect due to right-hemisphere stroke. Previous evidence suggests a high prevalence of cognitive estimation impairment in these patients, as they might show a general bias towards large magnitudes. Compared to 55 age- and gender-matched healthy controls, the patient group demonstrated impaired cognitive estimation. However, the expected large magnitude bias was not found. Lesion-symptom mapping related their general estimation impairment predominantly to brain damage in the right anterior temporal lobe. Also critically involved were the right uncinate fasciculus, the anterior commissure and the right inferior frontal gyrus. The main findings of this study emphasize the role of semantic memory in cognitive estimation, with reference to a growing body of neuroscientific literature postulating a transmodal hub for semantic cognition situated in the bilateral anterior temporal lobe. That such semantic hub function may also apply to numerical knowledge is not undisputed. We here propose a critical contribution of the right anterior temporal lobe to at least one aspect of number processing, i.e. the knowledge about real-world numerical magnitudes.


NeuroImage ◽  
2011 ◽  
Vol 55 (4) ◽  
pp. 1847-1852 ◽  
Author(s):  
Sean G. Baron ◽  
Daniel Osherson

Sign in / Sign up

Export Citation Format

Share Document