Gender transition affects neural correlates of empathy: A resting state functional connectivity study with ultra high-field 7T MR imaging

NeuroImage ◽  
2016 ◽  
Vol 138 ◽  
pp. 257-265 ◽  
Author(s):  
M. Spies ◽  
A. Hahn ◽  
G.S. Kranz ◽  
R. Sladky ◽  
U. Kaufmann ◽  
...  
2020 ◽  
Vol 124 (6) ◽  
pp. 1900-1913
Author(s):  
Justine C. Cléry ◽  
Yuki Hori ◽  
David J. Schaeffer ◽  
Joseph S. Gati ◽  
J. Andrew Pruszynski ◽  
...  

We used somatosensory stimulation combined with functional MRI (fMRI) in awake marmosets to reveal the topographic body representation in areas S1, S2, thalamus, and putamen. We showed the existence of a body representation organization within the thalamus and the cingulate cortex by computing functional connectivity maps from seeds defined in S1/S2 using resting-state fMRI data. This noninvasive approach will be essential for chronic studies by guiding invasive recording and manipulation techniques.


2021 ◽  
Vol 12 ◽  
Author(s):  
Outong Chen ◽  
Fang Guan ◽  
Yu Du ◽  
Yijun Su ◽  
Hui Yang ◽  
...  

A belief in communism refers to the unquestionable trust and belief in the justness of communism. Although former studies have discussed the political aim and social value of communism, the cognitive neural basis of a belief in communism remains largely unknown. In this study, we determined the behavioral and neural correlates between a belief in communism and a theory of mind (ToM). For study 1, questionnaire scores were measured and for study 2, regional homogeneity (ReHo) and resting-state functional connectivity (rsFC) were used as an index for resting-state functional MRI (rs-fMRI), as measured by the Belief in Communism Scale (BCS). The results showed that a belief in communism is associated with higher ReHo in the left thalamus and lower ReHo in the left medial frontal gyrus (MFG). Furthermore, the results of the rsFC analysis revealed that strength of functional connectivity between the left thalamus and the bilateral precuneus is negatively associated with a belief in communism. Hence, this study provides evidence that spontaneous brain activity in multiple regions, which is associated with ToM capacity, contributes to a belief in communism.


PsyCh Journal ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 239-247 ◽  
Author(s):  
Rui-ting Zhang ◽  
Tian-xiao Yang ◽  
Yi Wang ◽  
Yu-xiu Sui ◽  
Jing-jing Yao ◽  
...  

2020 ◽  
Author(s):  
Jonathan Wirsich ◽  
João Jorge ◽  
Giannina R Iannotti ◽  
Elhum A Shamshiri ◽  
Frédéric Grouiller ◽  
...  

AbstractBoth electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) are non-invasive methods that show complementary aspects of human brain activity. Despite their differences in probing brain activity, both electrophysiology and BOLD signal can map the underlying functional connectivity structure at the whole brain scale at different timescales. Previous work demonstrated a moderate but significant correlation between resting-state functional connectivity of both modalities, however there is a wide range of technical setups to measure simultaneous EEG-fMRI and the reliability of those measures between different setups remains unknown. This is true notably with respect to different magnetic field strengths (low and high field) and different spatial sampling of EEG (medium to high-density electrode coverage).Here, we investigated the reliability of the bimodal EEG-fMRI functional connectome in the most comprehensive resting-state simultaneous EEG-fMRI dataset compiled to date including a total of 72 subjects from four different imaging centers. Data was acquired from 1.5T, 3T and 7T scanners with simultaneously recorded EEG using 64 or 256 electrodes. We demonstrate that the whole-brain monomodal connectivity reliably correlates across different datasets and that the crossmodal correlation between EEG and fMRI connectivity of r≈0.3 can be reliably extracted in low and high-field scanners. The crossmodal correlation was strongest in the EEG-β frequency band but exists across all frequency bands. Both homotopic and withing intrinsic connectivity network (ICN) connections contributed the most to the crossmodal relationship.This study confirms, using a considerably diverse range of recording setups, that simultaneous EEG-fMRI offers a consistent estimate of multimodal functional connectomes in healthy subjects being organized into reliable ICNs across different timescales. This opens new avenues for estimating the dynamics of brain function and provides a better understanding of interactions between EEG and fMRI measures. Alterations of this coupling could be explored as a potential clinical marker of pathological brain function.


2020 ◽  
Author(s):  
Essa Yacoub ◽  
Mark D. Grier ◽  
Edward J. Auerbach ◽  
Russell L. Lagore ◽  
Noam Harel ◽  
...  

AbstractResting state functional connectivity refers to the temporal correlations between spontaneous hemodynamic signals obtained using functional magnetic resonance imaging. This technique has demonstrated that the structure and dynamics of identifiable networks are altered in psychiatric and neurological disease states. Thus, resting state network organizations can be used as a diagnostic, or prognostic recovery indicator. However, much about the physiological basis of this technique is unknown. Thus, providing a translational bridge to an optimal animal model, the macaque, in which invasive circuit manipulations are possible, is of utmost importance. Current approaches to resting state measurements in macaques face unique challenges associated with signal-to-noise, the need for invasive contrast agents, and within-subject designs. These limitations can, in principle, be overcome through ultra-high magnetic fields. However, ultra-high field imaging has yet to be adapted for fMRI in macaques. Here, we demonstrate that the combination of high channel count transmitter and receiver arrays, optimized pulse sequences, and careful anesthesia regimens, allows for detailed within-subject resting state analysis at ultra-high resolutions. In this study, we uncover thirty spatially detailed resting state components that are highly robust across individual macaques and closely resemble the quality and findings of connectomes from large human datasets. This detailed map of the rsfMRI ‘macaque connectome’ will be the basis for future neurobiological circuit manipulation work, providing valuable biological insights into human connectomics.


Sign in / Sign up

Export Citation Format

Share Document