temporal binding
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 38)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 47 (12) ◽  
pp. 1717-1730
Author(s):  
Luca Pascolini ◽  
Lisa J. Stephenson ◽  
Andrew P. Bayliss ◽  
Natalie A. Wyer

2021 ◽  
Vol 96 ◽  
pp. 103219
Author(s):  
S. Tonn ◽  
R. Pfister ◽  
A.L. Klaffehn ◽  
L. Weller ◽  
K.A. Schwarz

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256987
Author(s):  
Agnese Venskus ◽  
Francesca Ferri ◽  
Daniele Migliorati ◽  
Sara Spadone ◽  
Marcello Costantini ◽  
...  

The temporal binding window refers to the time frame within which temporal grouping of sensory information takes place. Sense of agency is the feeling of being in control of one’s actions, and their associated outcomes. While previous research has shown that temporal cues and multisensory integration play a role in sense of agency, no studies have directly assessed whether individual differences in the temporal binding window and sense of agency are associated. In all three experiments, to assess sense of agency, participants pressed a button triggering, after a varying delay, the appearance of the circle, and reported their sense of agency over the effect. To assess the temporal binding window a simultaneity judgment task (Experiment 1) and a double-flash illusion task (Experiment 2 and 3) was also performed. As expected, the temporal binding window correlated with the sense of agency window. In Experiment 3, these processes were modulated by applying occipital tACS at either 14Hz or 8Hz. We found 14Hz tACS stimulation was associated with narrower temporal biding window and sense of agency window. Our results suggest the temporal binding window and the time window of sense of agency are related. They also point towards a possible underlying neural mechanism (alpha peak frequency) for this association.


2021 ◽  
Vol 93 ◽  
pp. 103166
Author(s):  
Jingjin Gu ◽  
Yunyun Li ◽  
Ke Zhao ◽  
Xiaolan Fu
Keyword(s):  

Author(s):  
Bianca E. Ivanof ◽  
Devin B. Terhune ◽  
David Coyle ◽  
Marta Gottero ◽  
James W. Moore

AbstractTemporal binding refers to the subjective temporal compression between actions and their outcomes. It is widely used as an implicit measure of sense of agency, that is, the experience of controlling our actions and their consequences. One of the most common measures of temporal binding is the paradigm developed by Haggard, Clark and Kalogeras (2002) based on the Libet clock stimulus. Although widely used, it is not clear how sensitive the temporal binding effect is to the parameters of the clock stimulus. Here, we present five experiments examining the effects of clock speed, number of clock markings and length of the clock hand on binding. Our results show that the magnitude of temporal binding increases with faster clock speeds, whereas clock markings and clock hand length do not significantly influence temporal binding. We discuss the implications of these results.


Author(s):  
Annika L. Klaffehn ◽  
Florian B. Sellmann ◽  
Wladimir Kirsch ◽  
Wilfried Kunde ◽  
Roland Pfister

AbstractIt has been proposed that statistical integration of multisensory cues may be a suitable framework to explain temporal binding, that is, the finding that causally related events such as an action and its effect are perceived to be shifted towards each other in time. A multisensory approach to temporal binding construes actions and effects as individual sensory signals, which are each perceived with a specific temporal precision. When they are integrated into one multimodal event, like an action-effect chain, the extent to which they affect this event’s perception depends on their relative reliability. We test whether this assumption holds true in a temporal binding task by manipulating certainty of actions and effects. Two experiments suggest that a relatively uncertain sensory signal in such action-effect sequences is shifted more towards its counterpart than a relatively certain one. This was especially pronounced for temporal binding of the action towards its effect but could also be shown for effect binding. Other conceptual approaches to temporal binding cannot easily explain these results, and the study therefore adds to the growing body of evidence endorsing a multisensory approach to temporal binding.


2021 ◽  
Author(s):  
Niall Gavin ◽  
David McGovern ◽  
Rebecca Hirst

The sound-induced flash illusion occurs when a rapidly presented visual stimulus is accompanied by two auditory stimuli, creating the illusory percept of two visual stimuli. While much research has focused on how the temporal proximity of the audiovisual stimuli impacts susceptibility to the illusion, comparatively less research has been dedicated to investigating the impact of spatial manipulations. Here, we aimed to assess whether manipulating the eccentricity of visual flash stimuli altered the properties of the temporal binding window associated with the SIFI. Twenty participants were required to report whether they perceived one or two flashes that were concurrently presented with one or two beeps. Visual stimuli were presented at one of four different retinal eccentricities (2.5, 5, 7.5 or 10 degrees below fixation) and audiovisual stimuli were separated by one of eight stimulus-onset asynchronies. In keeping with previous findings, increasing stimulus-onset asynchrony between the auditory and visual stimuli led to a marked decrease in susceptibility to the illusion allowing us to estimate the width and amplitude of the temporal binding window. However, varying the eccentricity of the visual stimulus had no effect on either the width or the peak amplitude of the temporal binding window, with a similar pattern of results observed for both the “fission” and “fusion” variants of the illusion. Thus, spatial manipulations of the audiovisual stimuli used to elicit the SIFI appear to have a weaker effect on the integration of sensory signals than temporal manipulations, a finding which has implications for neuroanatomical models of multisensory integration.


Author(s):  
S. Antusch ◽  
R. Custers ◽  
H. Marien ◽  
H. Aarts

AbstractPeople form coherent representations of goal-directed actions. Such agency experiences of intentional action are reflected by a shift in temporal perception: self-generated motor movements and subsequent sensory effects are perceived to occur closer together in time—a phenomenon termed intentional binding. Building on recent research suggesting that temporal binding occurs without intentionally performing actions, we further examined whether such perceptual compression occurs when motor action is fully absent. In three experiments, we used a novel sensory-based adaptation of the Libet clock paradigm to assess how a brief tactile sensation on the index finger and a resulting auditory stimulus perceptually bind together in time. Findings revealed robust temporal repulsion (instead of binding) between tactile sensation and auditory effect. Temporal repulsion was attenuated when participants could anticipate the identity and temporal onset (two crucial components of intentional action) of the tactile sensation. These findings are briefly discussed in the context of differences between intentional movement and anticipated bodily sensations in shaping action coherence and agentic experiences.


2021 ◽  
Vol 15 ◽  
Author(s):  
Kishore Kumar Jagini

Our senses receive a manifold of sensory signals at any given moment in our daily lives. For a coherent and unified representation of information and precise motor control, our brain needs to temporally bind the signals emanating from a common causal event and segregate others. Traditionally, different mechanisms were proposed for the temporal binding phenomenon in multisensory and motor-sensory contexts. This paper reviews the literature on the temporal binding phenomenon in both multisensory and motor-sensory contexts and suggests future research directions for advancing the field. Moreover, by critically evaluating the recent literature, this paper suggests that common computational principles are responsible for the temporal binding in multisensory and motor-sensory contexts. These computational principles are grounded in the Bayesian framework of uncertainty reduction rooted in the Helmholtzian idea of unconscious causal inference.


Sign in / Sign up

Export Citation Format

Share Document