scholarly journals Topographic specificity of alpha power during auditory spatial attention

NeuroImage ◽  
2020 ◽  
Vol 207 ◽  
pp. 116360 ◽  
Author(s):  
Yuqi Deng ◽  
Inyong Choi ◽  
Barbara Shinn-Cunningham
2021 ◽  
Author(s):  
Tzvetan Popov ◽  
Bart Gips ◽  
Nathan Weisz ◽  
Ole Jensen

It is well-established that power modulations of alpha oscillations (8-14 Hz) reflect the retinotopic organization of visuospatial attention. To what extend this organization generalizes to other sensory modalities is a topic of ongoing scientific debate. Here, we designed an auditory paradigm eliminating any visual input in which participants were required to attend to upcoming sounds from one of 24 loudspeakers arranged in a horizontal circular array around the head. Maintaining the location of an auditory cue was associated with a topographically modulated distribution of posterior alpha power resembling the findings known from visual attention. Alpha power modulations in all electrodes allowed us to predict the sound location in the horizontal plane using a forward encoding model. Importantly, this prediction was still possible, albeit weaker, when derived from the horizontal electrooculogram capturing saccadic behavior. We conclude that attending to an auditory target engages oculomotor and visual cortical areas in a topographic manner akin to the retinotopic organization associated with visual attention suggesting that the spatial distribution of alpha power reflects the supramodal organization of egocentric space.


2018 ◽  
Author(s):  
Sarah Tune ◽  
Malte Wöstmann ◽  
Jonas Obleser

AbstractIn recent years, hemispheric lateralization of alpha power has emerged as a neural mechanism thought to underpin spatial attention across sensory modalities. Yet, how healthy aging, beginning in middle adulthood, impacts the modulation of lateralized alpha power supporting auditory attention remains poorly understood. In the current electroencephalography (EEG) study, middle-aged and older adults (N = 29; ~40-70 years) performed a dichotic listening task that simulates a challenging, multi-talker scenario. We examined the extent to which the modulation of 8-12 Hz alpha power would serve as neural marker of listening success across age. With respect to the increase in inter-individual variability with age, we examined an extensive battery of behavioral, perceptual, and neural measures. Similar to findings on younger adults, middle-aged and older listeners′ auditory spatial attention induced robust lateralization of alpha power, which synchronized with the speech rate. Notably, the observed relationship between this alpha lateralization and task performance did not co-vary with age. Instead, task performance was strongly related to an individual’s attentional and working memory capacity. Multivariate analyses revealed a separation of neural and behavioral variables independent of age. Our results suggest that in age-varying samples as the present one, the lateralization of alpha power is neither a sufficient nor necessary neural strategy for an individual’s auditory spatial attention, as higher age might come with increased use of alternative, compensatory mechanisms. Our findings emphasize that explaining inter-individual variability will be key to understanding the role of alpha oscillations in auditory attention in the aging listener.


2021 ◽  
Author(s):  
Edward J. Golob ◽  
Jeremy T. Nelson ◽  
Jaelle Scheuerman ◽  
Kristen B. Venable ◽  
Jeffrey R. Mock

2012 ◽  
Vol 108 (5) ◽  
pp. 1392-1402 ◽  
Author(s):  
Elsie Premereur ◽  
Wim Vanduffel ◽  
Pieter R. Roelfsema ◽  
Peter Janssen

Macaque frontal eye fields (FEF) and the lateral intraparietal area (LIP) are high-level oculomotor control centers that have been implicated in the allocation of spatial attention. Electrical microstimulation of macaque FEF elicits functional magnetic resonance imaging (fMRI) activations in area LIP, but no study has yet investigated the effect of FEF microstimulation on LIP at the single-cell or local field potential (LFP) level. We recorded spiking and LFP activity in area LIP during weak, subthreshold microstimulation of the FEF in a delayed-saccade task. FEF microstimulation caused a highly time- and frequency-specific, task-dependent increase in gamma power in retinotopically corresponding sites in LIP: FEF microstimulation produced a significant increase in LIP gamma power when a saccade target appeared and remained present in the LIP receptive field (RF), whereas less specific increases in alpha power were evoked by FEF microstimulation for saccades directed away from the RF. Stimulating FEF with weak currents had no effect on LIP spike rates or on the gamma power during memory saccades or passive fixation. These results provide the first evidence for task-dependent modulations of LFPs in LIP caused by top-down stimulation of FEF. Since the allocation and disengagement of spatial attention in visual cortex have been associated with increases in gamma and alpha power, respectively, the effects of FEF microstimulation on LIP are consistent with the known effects of spatial attention.


2017 ◽  
Author(s):  
Nicolas Burra ◽  
Dirk Kerzel ◽  
David Munoz ◽  
Didier Grandjean ◽  
Leonardo Ceravolo

Salient vocalizations, especially aggressive voices, are believed to attract attention due to an automatic threat detection system. However, studies assessing the temporal dynamics of auditory spatial attention to aggressive voices are missing. Using event-related potential markers of auditory spatial attention (N2ac and LPCpc), we show that attentional processing of threatening vocal signals is enhanced at two different stages of auditory processing. As early as 200 ms post stimulus onset, attentional orienting/engagement is enhanced for threatening as compared to happy vocal signals. Subsequently, as early as 400 ms post stimulus onset, the reorienting of auditory attention to the center of the screen (or disengagement from the target) is enhanced. This latter effect is consistent with the need to optimize perception by balancing the intake of stimulation from left and right auditory space. Our results extend the scope of theories from the visual to the auditory modality by showing that threatening stimuli also bias early spatial attention in the auditory modality. Although not the focus of the present work, we observed that the attentional enhancement was more pronounced in female than male participants.


2018 ◽  
Vol 116 (2) ◽  
pp. 660-669 ◽  
Author(s):  
Mohsen Alavash ◽  
Sarah Tune ◽  
Jonas Obleser

Speech comprehension in noisy, multitalker situations poses a challenge. Successful behavioral adaptation to a listening challenge often requires stronger engagement of auditory spatial attention and context-dependent semantic predictions. Human listeners differ substantially in the degree to which they adapt behaviorally and can listen successfully under such circumstances. How cortical networks embody this adaptation, particularly at the individual level, is currently unknown. We here explain this adaptation from reconfiguration of brain networks for a challenging listening task (i.e., a linguistic variant of the Posner paradigm with concurrent speech) in an age-varying sample of n = 49 healthy adults undergoing resting-state and task fMRI. We here provide evidence for the hypothesis that more successful listeners exhibit stronger task-specific reconfiguration (hence, better adaptation) of brain networks. From rest to task, brain networks become reconfigured toward more localized cortical processing characterized by higher topological segregation. This reconfiguration is dominated by the functional division of an auditory and a cingulo-opercular module and the emergence of a conjoined auditory and ventral attention module along bilateral middle and posterior temporal cortices. Supporting our hypothesis, the degree to which modularity of this frontotemporal auditory control network is increased relative to resting state predicts individuals’ listening success in states of divided and selective attention. Our findings elucidate how fine-tuned cortical communication dynamics shape selection and comprehension of speech. Our results highlight modularity of the auditory control network as a key organizational principle in cortical implementation of auditory spatial attention in challenging listening situations.


Sign in / Sign up

Export Citation Format

Share Document