scholarly journals The interplay between multisensory integration and perceptual decision making

NeuroImage ◽  
2020 ◽  
Vol 222 ◽  
pp. 116970
Author(s):  
Manuel R. Mercier ◽  
Celine Cappe
2019 ◽  
Author(s):  
Manuel R. Mercier ◽  
Celine Cappe

AbstractFacing perceptual uncertainty, the brain combines information from different senses to shape optimal decision making and to guide behavior. Despite overlapping neural networks underlying multisensory integration and perceptual decision making, the process chain of decision formation has been studied mostly in unimodal contexts and is thought to be supramodal. To reveal whether and how multisensory processing interplay with perceptual decision making, we devised a paradigm mimicking naturalistic situations where human participants were exposed to continuous cacophonous audiovisual inputs containing an unpredictable relevant signal cue in one or two modalities. Using multivariate pattern analysis on concurrently recorded EEG, we decoded the neural signatures of sensory encoding and decision formation stages. Generalization analyses across conditions and time revealed that multisensory signal cues were processed faster during both processing stages. We further established that acceleration of neural dynamics was directly linked to two distinct multisensory integration processes and associated with multisensory benefit. Our results, substantiated in both detection and categorization tasks, provide evidence that the brain integrates signals from different modalities at both the sensory encoding and the decision formation stages.


2018 ◽  
Vol 41 ◽  
Author(s):  
Patrick Simen ◽  
Fuat Balcı

AbstractRahnev & Denison (R&D) argue against normative theories and in favor of a more descriptive “standard observer model” of perceptual decision making. We agree with the authors in many respects, but we argue that optimality (specifically, reward-rate maximization) has proved demonstrably useful as a hypothesis, contrary to the authors’ claims.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Genís Prat-Ortega ◽  
Klaus Wimmer ◽  
Alex Roxin ◽  
Jaime de la Rocha

AbstractPerceptual decisions rely on accumulating sensory evidence. This computation has been studied using either drift diffusion models or neurobiological network models exhibiting winner-take-all attractor dynamics. Although both models can account for a large amount of data, it remains unclear whether their dynamics are qualitatively equivalent. Here we show that in the attractor model, but not in the drift diffusion model, an increase in the stimulus fluctuations or the stimulus duration promotes transitions between decision states. The increase in the number of transitions leads to a crossover between weighting mostly early evidence (primacy) to weighting late evidence (recency), a prediction we validate with psychophysical data. Between these two limiting cases, we found a novel flexible categorization regime, in which fluctuations can reverse initially-incorrect categorizations. This reversal asymmetry results in a non-monotonic psychometric curve, a distinctive feature of the attractor model. Our findings point to correcting decision reversals as an important feature of perceptual decision making.


Mindfulness ◽  
2021 ◽  
Author(s):  
Sungjin Im ◽  
Maya A. Marder ◽  
Gabriella Imbriano ◽  
Tamara J. Sussman ◽  
Aprajita Mohanty

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2461
Author(s):  
Alexander Kuc ◽  
Vadim V. Grubov ◽  
Vladimir A. Maksimenko ◽  
Natalia Shusharina ◽  
Alexander N. Pisarchik ◽  
...  

Perceptual decision-making requires transforming sensory information into decisions. An ambiguity of sensory input affects perceptual decisions inducing specific time-frequency patterns on EEG (electroencephalogram) signals. This paper uses a wavelet-based method to analyze how ambiguity affects EEG features during a perceptual decision-making task. We observe that parietal and temporal beta-band wavelet power monotonically increases throughout the perceptual process. Ambiguity induces high frontal beta-band power at 0.3–0.6 s post-stimulus onset. It may reflect the increasing reliance on the top-down mechanisms to facilitate accumulating decision-relevant sensory features. Finally, this study analyzes the perceptual process using mixed within-trial and within-subject design. First, we found significant percept-related changes in each subject and then test their significance at the group level. Thus, observed beta-band biomarkers are pronounced in single EEG trials and may serve as control commands for brain-computer interface (BCI).


Cortex ◽  
2021 ◽  
Author(s):  
Nicole R. Stefanac ◽  
Shou-Han Zhou ◽  
Megan M. Spencer-Smith ◽  
Redmond O’Connell ◽  
Mark A. Bellgrove

2015 ◽  
Vol 9 ◽  
Author(s):  
Mei-Yen Chen ◽  
Koji Jimura ◽  
Corey N. White ◽  
W. Todd Maddox ◽  
Russell A. Poldrack

PLoS ONE ◽  
2017 ◽  
Vol 12 (2) ◽  
pp. e0171375 ◽  
Author(s):  
Emilie Qiao-Tasserit ◽  
Maria Garcia Quesada ◽  
Lia Antico ◽  
Daphne Bavelier ◽  
Patrik Vuilleumier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document