scholarly journals Motor resonance in monkey parietal and premotor cortex during action observation: Influence of viewing perspective and effector identity

NeuroImage ◽  
2021 ◽  
Vol 224 ◽  
pp. 117398
Author(s):  
Prosper A. Fiave ◽  
Koen Nelissen
2014 ◽  
Vol 26 (9) ◽  
pp. 2028-2041 ◽  
Author(s):  
Alan D. A. Mattiassi ◽  
Sonia Mele ◽  
Luca F. Ticini ◽  
Cosimo Urgesi

Action observation activates the observer's motor system. These motor resonance responses are automatic and triggered even when the action is only implied in static snapshots. However, it is largely unknown whether an action needs to be consciously perceived to trigger motor resonance. In this study, we used single-pulse TMS to study the facilitation of corticospinal excitability (a measure of motor resonance) during supraliminal and subliminal presentations of implied action images. We used a forward and backward dynamic masking procedure that successfully prevented the conscious perception of prime stimuli depicting a still hand or an implied abduction movement of the index or little finger. The prime was followed by the supraliminal presentation of a still or implied action probe hand. Our results revealed a muscle-specific increase of motor facilitation following observation of the probe hand actions that were consciously perceived as compared with observation of a still hand. Crucially, unconscious perception of prime hand actions presented before probe still hands did not increase motor facilitation as compared with observation of a still hand, suggesting that motor resonance requires perceptual awareness. However, the presentation of a masked prime depicting an action that was incongruent with the probe hand action suppressed motor resonance to the probe action such that comparable motor facilitation was recorded during observation of implied action and still hand probes. This suppression of motor resonance may reflect the processing of action conflicts in areas upstream of the motor cortex and may subserve a basic mechanism for dealing with the multiple and possibly incongruent actions of other individuals.


2018 ◽  
Vol 5 (10) ◽  
pp. 181356 ◽  
Author(s):  
Arran T. Reader ◽  
Nicholas P. Holmes

The ventral premotor cortex (PMv) is involved in grasping and object manipulation, while the dorsal premotor cortex (PMd) has been suggested to play a role in reaching and action selection. These areas have also been associated with action imitation, but their relative roles in different types of action imitation are unclear. We examined the role of the left PMv and PMd in meaningful and meaningless action imitation by using repetitive transcranial magnetic stimulation (rTMS). Participants imitated meaningful and meaningless actions performed by a confederate actor while both individuals were motion-tracked. rTMS was applied over the left PMv, left PMd or a vertex control site during action observation or imitation. Digit velocity was significantly greater following stimulation over the PMv during imitation compared with stimulation over the PMv during observation, regardless of action meaning. Similar effects were not observed over the PMd or vertex. In addition, stimulation over the PMv increased finger movement speed in a (non-imitative) finger–thumb opposition task. We suggest that claims regarding the role of the PMv in object-directed hand shaping may stem from the prevalence of object-directed designs in motor control research. Our results indicate that the PMv may have a broader role in ‘target-directed’ hand shaping, whereby different areas of the hand are considered targets to act upon during intransitive gesturing.


2013 ◽  
Vol 14 (3) ◽  
pp. 329-350 ◽  
Author(s):  
Alessandra Sciutti ◽  
Ambra Bisio ◽  
Francesco Nori ◽  
Giorgio Metta ◽  
Luciano Fadiga ◽  
...  

Understanding the goals of others is fundamental for any kind of interpersonal interaction and collaboration. From a neurocognitive perspective, intention understanding has been proposed to depend on an involvement of the observer’s motor system in the prediction of the observed actions (Nyström et al. 2011; Rizzolatti & Sinigaglia 2010; Southgate et al. 2009). An open question is if a similar understanding of the goal mediated by motor resonance can occur not only between humans, but also for humanoid robots. In this study we investigated whether goal-oriented robotic actions can induce motor resonance by measuring the appearance of anticipatory gaze shifts to the goal during action observation. Our results indicate a similar implicit processing of humans’ and robots’ actions and propose to use anticipatory gaze behaviour as a tool for the evaluation of human-robot interactions. Keywords: Humanoid robot; motor resonance; anticipation; proactive gaze; action understanding


2010 ◽  
Vol 104 (4) ◽  
pp. 1867-1871 ◽  
Author(s):  
Agustín Petroni ◽  
Federico Baguear ◽  
Valeria Della-Maggiore

In humans, the motor system can be activated by passive observation of actions or static pictures with implied action. The origin of this facilitation is of major interest to the field of motor control. Recently it has been shown that sensorimotor learning can reconfigure the motor system during action observation. Here we tested directly the hypothesis that motor resonance arises from sensorimotor contingencies by measuring corticospinal excitability in response to abstract non-action cues previously associated with an action. Motor evoked potentials were measured from the first dorsal interosseus (FDI) while human subjects observed colored stimuli that had been visually or motorically associated with a finger movement (index or little finger abduction). Corticospinal excitability was higher during the observation of a colored cue that preceded a movement involving the recorded muscle than during the observation of a different colored cue that preceded a movement involving a different muscle. Crucially this facilitation was only observed when the cue was associated with an executed movement but not when it was associated with an observed movement. Our findings provide solid evidence in support of the sensorimotor hypothesis of action observation and further suggest that the physical nature of the observed stimulus mediating this phenomenon may in fact be irrelevant.


1998 ◽  
Vol 21 (4) ◽  
pp. 527-528 ◽  
Author(s):  
Giacomo Rizzolatti

The evolutionary continuity between the prespeech functions of premotor cortex and its new linguistic functions, the main thesis of MacNeilage's target article, is confirmed by the recent discovery of “mirror” neurons in monkeys and a corresponding action-observation/action-execution matching system in humans. Physiological data (and other considerations) appear to indicate, however, that brachiomanual gestures played a greater role in language evolution than MacNeilage would like to admit.


2012 ◽  
Vol 22 (5) ◽  
pp. 752-767 ◽  
Author(s):  
Guy Vingerhoets ◽  
Lenny Stevens ◽  
Morgan Meesdom ◽  
Pieterjan Honoré ◽  
Pieter Vandemaele ◽  
...  

2014 ◽  
Vol 369 (1644) ◽  
pp. 20130174 ◽  
Author(s):  
A. Kraskov ◽  
R. Philipp ◽  
S. Waldert ◽  
G. Vigneswaran ◽  
M. M. Quallo ◽  
...  

Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons’ discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like properties (52% F5 and 58% M1). Some PTNs exhibited ‘classical’ mirror neuron properties, increasing activity for both execution and observation, while others decreased their discharge during observation (‘suppression mirror-neurons’). These experiments not only demonstrate the existence of PTNs as mirror neurons in M1, but also reveal some interesting differences between M1 and F5 mirror PTNs. Although observation-related changes in the discharge of PTNs must reach the spinal cord and will include some direct projections to motoneurons supplying grasping muscles, there was no EMG activity in these muscles during action observation. We suggest that the mirror neuron system is involved in the withholding of unwanted movement during action observation. Mirror neurons are differentially recruited in the behaviour that switches rapidly between making your own movements and observing those of others.


2015 ◽  
Vol 22 (4) ◽  
pp. 664-669 ◽  
Author(s):  
Tom J. Perkins ◽  
Richard G. Bittar ◽  
Jane A. McGillivray ◽  
Ivanna I. Cox ◽  
Mark A. Stokes

Author(s):  
Davide Albertini ◽  
Marco Lanzilotto ◽  
Monica Maranesi ◽  
Luca Bonini

The neural processing of others' observed actions recruits a large network of brain regions (the action observation network, AON), in which frontal motor areas are thought to play a crucial role. Since the discovery of mirror neurons (MNs) in the ventral premotor cortex, it has been assumed that their activation was conditional upon the presentation of biological rather than nonbiological motion stimuli, supporting a form of direct visuomotor matching. Nonetheless, nonbiological observed movements have rarely been used as control stimuli to evaluate visual specificity, thereby leaving the issue of similarity among neural codes for executed actions and biological or nonbiological observed movements unresolved. Here, we addressed this issue by recording from two nodes of the AON that are attracting increasing interest, namely the ventro-rostral part of the dorsal premotor area F2 and the mesial pre-supplementary motor area F6 of macaques while they 1) executed a reaching-grasping task, 2) observed an experimenter performing the task, and 3) observed a nonbiological effector moving in the same context. Our findings revealed stronger neuronal responses to the observation of biological than nonbiological movement, but biological and nonbiological visual stimuli produced highly similar neural dynamics and relied on largely shared neural codes, which in turn remarkably differed from those associated with executed actions. These results indicate that, in highly familiar contexts, visuo-motor remapping processes in premotor areas hosting MNs are more complex and flexible than predicted by a direct visuomotor matching hypothesis.


2021 ◽  
pp. 102214
Author(s):  
Giovanni Pezzulo ◽  
Francesco Donnarumma ◽  
Simone Ferrari-Toniolo ◽  
Paul Cisek ◽  
Alexandra Battaglia-Mayer

Sign in / Sign up

Export Citation Format

Share Document