scholarly journals Memory Reconsolidation: Sensitivity of Spatial Memory to Inhibition of Protein Synthesis in Dorsal Hippocampus during Encoding and Retrieval

Neuron ◽  
2006 ◽  
Vol 50 (3) ◽  
pp. 479-489 ◽  
Author(s):  
Richard G.M. Morris ◽  
Jennifer Inglis ◽  
James A. Ainge ◽  
Henry J. Olverman ◽  
Jane Tulloch ◽  
...  
2021 ◽  
Author(s):  
Shuyi Qi ◽  
Shi Min Tan ◽  
Rong Wang ◽  
Jessica A. Higginbotham ◽  
Jobe L. Ritchie ◽  
...  

The dorsal hippocampus (DH) is key to the long-term maintenance of cocaine memories following retrieval-induced memory destabilization; even though, it is not the site of protein synthesis-dependent memory reconsolidation. Here, we took advantage of the temporal and spatial specificity of an optogenetic manipulation to examine the role of the cornu ammonis 3 subregion of the DH (dCA3) in early-stage cocaine-memory reconsolidation. Male Sprague-Dawley rats expressing eNpHR3.0 in the DH were trained to self-administer cocaine in a distinct context and underwent extinction training in a different context. Rats then received a 15-min memory-reactivation session, to destabilize cocaine memories and trigger reconsolidation, or remained in their home cages (no-reactivation controls). Optogenetic inhibition of the dCA3 for 1 h immediately, but not 1 h, after memory reactivation resulted in cocaine-memory impairment as indicated by reduction in drug-seeking behavior selectively in the cocaine-paired context 3 d later, at test, relative to responding in no-inhibition, no-reactivation, and no-eNpHR3.0 controls. Cocaine-memory impairment was associated with reduced c-Fos expression, an index of neuronal activation, in the dCA3 stratum lucidum (SL) and stratum pyramidale (SP) at test. Based on these observations and extant literature, we postulate that recurrent circuits in the SP are activated during early-stage memory reconsolidation to maintain labile cocaine memories prior to protein synthesis-dependent restabilization in another brain region, such as the basolateral amygdala. Furthermore, SL and SP interneurons may enhance memory reconsolidation by limiting synaptic noise in the SP and also contribute to recall as elements of the updated cocaine engram or retrieval links.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 610
Author(s):  
Jessica C. Gaspar ◽  
Catherine Healy ◽  
Mehnaz I. Ferdousi ◽  
Michelle Roche ◽  
David P. Finn

Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors that exist in three isoforms: PPARα, PPARβ/δ and PPARγ. Studies suggest that the PPAR signalling system may modulate pain, anxiety and cognition. The aim of the present study was to investigate whether endogenous signalling via PPARs differentially modulates innate anxiety responses and mnemonic function in the presence and absence of inflammatory pain. We examined the effects of intraperitoneal administration of GW6471 (PPARα antagonist), GSK0660 (PPARβ/δ antagonist), GW9662 (PPARγ antagonist), and N-palmitoylethanolamide (PEA) on rat behaviour in the elevated plus maze (EPM), open field (OF), light-dark box (LDB), and novel object recognition (NOR) tests in the presence or absence of chronic inflammatory pain. Complete Freund’s Adjuvant (CFA)-injected rats exhibited impaired recognition and spatial mnemonic performance in the NOR test and pharmacological blockade of PPARα further impaired spatial memory in CFA-treated rats. N-oleoylethanolamide (OEA) levels were higher in the dorsal hippocampus in CFA-injected animals compared to their counterparts. The results suggest a modulatory effect of CFA-induced chronic inflammatory pain on cognitive processing, but not on innate anxiety-related responses. Increased OEA-PPARα signalling may act as a compensatory mechanism to preserve spatial memory function following CFA injection.


Sign in / Sign up

Export Citation Format

Share Document