scholarly journals Calcium Store Depletion Induces Persistent Perisomatic Increases in the Functional Density of h Channels in Hippocampal Pyramidal Neurons

Neuron ◽  
2010 ◽  
Vol 68 (5) ◽  
pp. 921-935 ◽  
Author(s):  
Rishikesh Narayanan ◽  
Kevin J. Dougherty ◽  
Daniel Johnston
2014 ◽  
Vol 111 (6) ◽  
pp. 1369-1382 ◽  
Author(s):  
Ann M. Clemens ◽  
Daniel Johnston

Disruptions of endoplasmic reticulum (ER) Ca2+ homeostasis are heavily linked to neuronal pathology. Depletion of ER Ca2+ stores can result in cellular dysfunction and potentially cell death, although adaptive processes exist to aid in survival. We examined the age and region dependence of one postulated, adaptive response to ER store-depletion (SD), hyperpolarization-activated cation-nonspecific ( h)-channel plasticity in neurons of the dorsal and ventral hippocampus (DHC and VHC, respectively) from adolescent and adult rats. With the use of whole-cell patch-clamp recordings from the soma and dendrites of CA1 pyramidal neurons, we observed a change in h-sensitive measurements in response to SD, induced by treatment with cyclopiazonic acid, a sarcoplasmic reticulum/ER Ca2+-ATPase blocker. We found that whereas DHC and VHC neurons in adolescent animals respond to SD with a perisomatic expression of SD h plasticity, adult animals express SD h plasticity with a dendritic and somatodendritic locus of plasticity in DHC and VHC neurons, respectively. Furthermore, SD h plasticity in adults was dependent on membrane potential and on the activation of L-type voltage-gated Ca2+ channels. These results suggest that cellular responses to the impairment of ER function, or ER stress, are dependent on brain region and age and that the differential expression of SD h plasticity could provide a neural basis for region- and age-dependent disease vulnerabilities.


2019 ◽  
Vol 121 (3) ◽  
pp. 773-784 ◽  
Author(s):  
Timothy W. Church ◽  
Jon T. Brown ◽  
Neil V. Marrion

Action potential firing in hippocampal pyramidal neurons is regulated by generation of an afterhyperpolarization (AHP). Three phases of AHP are recognized, with the fast AHP regulating action potential firing at the onset of a burst and the medium and slow AHPs supressing action potential firing over hundreds of milliseconds and seconds, respectively. Activation of β-adrenergic receptors suppresses the slow AHP by a protein kinase A-dependent pathway. However, little is known regarding modulation of the medium AHP. Application of the selective β-adrenergic receptor agonist isoproterenol suppressed both the medium and slow AHPs evoked in rat CA1 hippocampal pyramidal neurons recorded from slices maintained in organotypic culture. Suppression of the slow AHP was mimicked by intracellular application of cAMP, with the suppression of the medium AHP by isoproterenol still being evident in cAMP-dialyzed cells. Suppression of both the medium and slow AHPs was antagonized by the β-adrenergic receptor antagonist propranolol. The effect of isoproterenol to suppress the medium AHP was mimicked by two β3-adrenergic receptor agonists, BRL37344 and SR58611A. The medium AHP was mediated by activation of small-conductance calcium-activated K+ channels and deactivation of H channels at the resting membrane potential. Suppression of the medium AHP by isoproterenol was reduced by pretreating cells with the H-channel blocker ZD7288. These data suggest that activation of β3-adrenergic receptors inhibits H channels, which suppresses the medium AHP in CA1 hippocampal neurons by utilizing a pathway that is independent of a rise in intracellular cAMP. This finding highlights a potential new target in modulating H-channel activity and thereby neuronal excitability. NEW & NOTEWORTHY The noradrenergic input into the hippocampus is involved in modulating long-term synaptic plasticity and is implicated in learning and memory. We demonstrate that activation of functional β3-adrenergic receptors suppresses the medium afterhyperpolarization in hippocampal pyramidal neurons. This finding provides an additional mechanism to increase action potential firing frequency, where neuronal excitability is likely to be crucial in cognition and memory.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jesús David Urbano-Gámez ◽  
Juan José Casañas ◽  
Itziar Benito ◽  
María Luz Montesinos

AbstractDown syndrome (DS) is the most frequent genetic cause of intellectual disability including hippocampal-dependent memory deficits. We have previously reported hippocampal mTOR (mammalian target of rapamycin) hyperactivation, and related plasticity as well as memory deficits in Ts1Cje mice, a DS experimental model. Here we characterize the proteome of hippocampal synaptoneurosomes (SNs) from these mice, and found a predicted alteration of synaptic plasticity pathways, including long term depression (LTD). Accordingly, mGluR-LTD (metabotropic Glutamate Receptor-LTD) is enhanced in the hippocampus of Ts1Cje mice and this is correlated with an increased proportion of a particular category of mushroom spines in hippocampal pyramidal neurons. Remarkably, prenatal treatment of these mice with rapamycin has a positive pharmacological effect on both phenotypes, supporting the therapeutic potential of rapamycin/rapalogs for DS intellectual disability.


1985 ◽  
Vol 1 ◽  
pp. S148
Author(s):  
Yoshihiro Matsuda ◽  
Shigeru Yoshida ◽  
Koichi Fujimura ◽  
Minoru Nakamura

2000 ◽  
Vol 83 (1) ◽  
pp. 81-89 ◽  
Author(s):  
Aren J. Borgdorff ◽  
George G. Somjen ◽  
Wytse J. Wadman

Previous studies have shown that exposing hippocampal slices to low osmolarity (πo) or to low extracellular NaCl concentration ([NaCl]o) enhances synaptic transmission and also causes interstitial calcium ([Ca2+]o) to decrease. Reduction of [Ca2+]o suggests cellular uptake and could explain the potentiation of synaptic transmission. We measured intracellular calcium activity ([Ca2+]i) using fluorescent indicator dyes. In CA1 hippocampal pyramidal neurons in tissue slices, lowering πo by ∼70 mOsm caused “resting” [Ca2+]i as well as synaptically or directly stimulated transient increases of calcium activity (Δ[Ca2+]i) to transiently decrease and then to increase. In dissociated cells, lowering πo by ∼70 mOsm caused [Ca2+]i to almost double on average from 83 to 155 nM. The increase of [Ca2+]i was not significantly correlated with hypotonic cell swelling. Isoosmotic (mannitol- or sucrose-substituted) lowering of [NaCl]o, which did not cause cell swelling, also raised [Ca2+]i. Substituting NaCl with choline-Cl or Na-methyl-sulfate did not affect [Ca2+]i. In neurons bathed in calcium-free medium, lowering πo caused a milder increase of [Ca2+]i, which was correlated with cell swelling, but in the absence of external Ca2+, isotonic lowering of [NaCl]o triggered only a brief, transient response. We conclude that decrease of extracellular ionic strength (i.e., in both low πo and low [NaCl]o) causes a net influx of Ca2+ from the extracellular medium whereas cell swelling, or the increase in membrane tension, is a signal for the release of Ca2+ from intracellular stores.


Sign in / Sign up

Export Citation Format

Share Document