scholarly journals β3-Adrenergic receptor-dependent modulation of the medium afterhyperpolarization in rat hippocampal CA1 pyramidal neurons

2019 ◽  
Vol 121 (3) ◽  
pp. 773-784 ◽  
Author(s):  
Timothy W. Church ◽  
Jon T. Brown ◽  
Neil V. Marrion

Action potential firing in hippocampal pyramidal neurons is regulated by generation of an afterhyperpolarization (AHP). Three phases of AHP are recognized, with the fast AHP regulating action potential firing at the onset of a burst and the medium and slow AHPs supressing action potential firing over hundreds of milliseconds and seconds, respectively. Activation of β-adrenergic receptors suppresses the slow AHP by a protein kinase A-dependent pathway. However, little is known regarding modulation of the medium AHP. Application of the selective β-adrenergic receptor agonist isoproterenol suppressed both the medium and slow AHPs evoked in rat CA1 hippocampal pyramidal neurons recorded from slices maintained in organotypic culture. Suppression of the slow AHP was mimicked by intracellular application of cAMP, with the suppression of the medium AHP by isoproterenol still being evident in cAMP-dialyzed cells. Suppression of both the medium and slow AHPs was antagonized by the β-adrenergic receptor antagonist propranolol. The effect of isoproterenol to suppress the medium AHP was mimicked by two β3-adrenergic receptor agonists, BRL37344 and SR58611A. The medium AHP was mediated by activation of small-conductance calcium-activated K+ channels and deactivation of H channels at the resting membrane potential. Suppression of the medium AHP by isoproterenol was reduced by pretreating cells with the H-channel blocker ZD7288. These data suggest that activation of β3-adrenergic receptors inhibits H channels, which suppresses the medium AHP in CA1 hippocampal neurons by utilizing a pathway that is independent of a rise in intracellular cAMP. This finding highlights a potential new target in modulating H-channel activity and thereby neuronal excitability. NEW & NOTEWORTHY The noradrenergic input into the hippocampus is involved in modulating long-term synaptic plasticity and is implicated in learning and memory. We demonstrate that activation of functional β3-adrenergic receptors suppresses the medium afterhyperpolarization in hippocampal pyramidal neurons. This finding provides an additional mechanism to increase action potential firing frequency, where neuronal excitability is likely to be crucial in cognition and memory.

2007 ◽  
Vol 98 (6) ◽  
pp. 3666-3676 ◽  
Author(s):  
Hai Xia Zhang ◽  
Liu Lin Thio

Although extracellular Zn2+ is an endogenous biphasic modulator of strychnine-sensitive glycine receptors (GlyRs), the physiological significance of this modulation remains poorly understood. Zn2+ modulation of GlyR may be especially important in the hippocampus where presynaptic Zn2+ is abundant. Using cultured embryonic mouse hippocampal neurons, we examined whether 1 μM Zn2+, a potentiating concentration, enhances the inhibitory effects of GlyRs activated by sustained glycine applications. Sustained 20 μM glycine (EC25) applications alone did not decrease the number of action potentials evoked by depolarizing steps, but they did in 1 μM Zn2+. At least part of this effect resulted from Zn2+ enhancing the GlyR-induced decrease in input resistance. Sustained 20 μM glycine applications alone did not alter neuronal bursting, a form of hyperexcitability induced by omitting extracellular Mg2+. However, sustained 20 μM glycine applications depressed neuronal bursting in 1 μM Zn2+. Zn2+ did not enhance the inhibitory effects of sustained 60 μM glycine (EC70) applications in these paradigms. These results suggest that tonic GlyR activation could decrease neuronal excitability. To test this possibility, we examined the effect of the GlyR antagonist strychnine and the Zn2+ chelator tricine on action potential firing by CA1 pyramidal neurons in mouse hippocampal slices. Co-applying strychnine and tricine slightly but significantly increased the number of action potentials fired during a depolarizing current step and decreased the rheobase for action potential firing. Thus Zn2+ may modulate neuronal excitability normally and in pathological conditions such as seizures by potentiating GlyRs tonically activated by low agonist concentrations.


2005 ◽  
Vol 93 (2) ◽  
pp. 843-852 ◽  
Author(s):  
Gergana Hadjilambreva ◽  
Eilhard Mix ◽  
Arndt Rolfs ◽  
Jana Müller ◽  
Ulf Strauss

The immunomodulatory cytokine interferon-β (IFN-β) is used in the treatment of autoimmune diseases such as multiple sclerosis. However, the effect of IFN-β on neuronal functions is currently unknown. Intracellular recordings were conducted on somatosensory neurons of neocortical layers 2/3 and 5 exposed to IFN-β. The excitability of neurons was increased by IFN-β (10–10,000 U/ml) in two kinetically distinct, putatively independent manners. First IFN-β reversibly influenced the subthreshold membrane response by raising the membrane resistance RM 2.5-fold and the membrane time constant τ 1.7-fold dose-dependently. The effect required permanent exposure to IFN-β and was reduced in magnitude if the extracellular K+ was lowered. However, the membrane response to IFN-β in the subthreshold range was prevented by ZD7288 (a specific blocker of Ih) but not by Ni2+, carbachol, or bicuculline, pointing to a dependence on an intact Ih. Second, IFN-β enhanced the rate of action potential firing. This effect was observed to develop for >1 h when the cell was exposed to IFN-β for 5 min or >5 min and showed no reversibility (≤210 min). Current-discharge ( F-I) curves revealed a shift (prevented by bicuculline) as well as an increase in slope (prevented by carbachol and Ni2+). Layer specificity was not observed with any of the described effects. In conclusion, IFN-β influences the neuronal excitability in neocortical pyramidal neurons in vitro, especially under conditions of slightly increased extracellular K+. Our blocker experiments indicate that changes in various ionic conductances with different voltage dependencies cause different IFN-β influences on sub- and suprathreshold behavior, suggesting a more general intracellular process induced by IFN-β.


2019 ◽  
Author(s):  
Antara Das ◽  
Bingyao Zhu ◽  
Yunyao Xie ◽  
Lisha Zeng ◽  
An T. Pham ◽  
...  

AbstractAdvances in genome sequencing have identified over 1300 mutations in the SCN1A sodium channel gene that result in genetic epilepsies. However, how individual mutations within SCN1A produce seizures remains elusive for most mutations. Previous work from our lab has shown that the K1270T (KT) mutation, which is linked to GEFS+ (Genetic Epilepsy with Febrile Seizure plus) in humans, causes reduced firing of GABAergic neurons in a Drosophila knock-in model. To examine the effect of this mutation in mammals, we introduced the equivalent KT mutation into the mouse Scn1a (Scn1aKT) gene using CRISPR/Cas9. Mouse lines carrying this mutation were examined in two widely used genetic backgrounds, C57BL/6NJ and 129×1/SvJ. In both backgrounds, homozygous mutants had spontaneous seizures and died by postnatal day 23. There was no difference in the lifespan of mice heterozygous for the mutation in either background when compared to wild-type littermates up to 6 months. Heterozygous mutants had heat-induced seizures at ~42 deg. Celsius, a temperature that did not induce seizures in wild-type littermates. In acute hippocampal slices, current-clamp recordings revealed a significant depolarized shift in action potential threshold and reduced action potential amplitude in parvalbumin-expressing inhibitory interneurons in Scn1aKT/+ mice. There was no change in the firing properties of excitatory CA1 pyramidal neurons. Our results indicate that Scn1aKT/+ mice develop seizures, and impaired action potential firing of inhibitory interneurons in Scn1aKT/+ mice may produce hyperexcitability in the hippocampus.


2019 ◽  
Author(s):  
Jessica Abigail Feria Pliego ◽  
Christine M. Pedroarena

ABSTRACTThe Kv1 voltage-gated potassium channels (kv1.1-1.8) display characteristic low-threshold activation ranges what enables their role in regulating diverse aspects of neuronal function, such as the action potential (AP) threshold and waveform, and thereby influence neuronal excitability or synaptic transmission. Kv1 channels are highly expressed in the cerebellar cortex and nuclei and mutations of human Kv1 genes are associated to episodic forms of ataxia (EAT-1). Besides the well-established role of Kv1 channels in regulating the basket-Purkinje cells inhibitory synapses of cerebellar cortex, cerebellar Kv1 channels regulate the principal deep cerebellar nuclear neurons activity (DCNs). DCNs however, include as well different groups of GABAergic cells that project locally to target principal DCNs, or to the inferior-olive or recurrently to the cerebellar cortex, but whether their function is controlled by Kv1 channels remains unclear. Here, using cerebellar slices from the GAD67-GFP line mice to identify putative GABAergic-DCNs and specific Kv1 channel blockers (dendrotoxins-alpha/I/K (DTXs)) we provide evidence that putative GABAergic-DCNs spontaneous and evoked activity is controlled by Kv1 currents. DTXs shifted in the hyperpolarizing direction the voltage threshold of spontaneous APs in GABAergic-DCNs, increased GABAergic-DCNs spontaneous firing rate and decreased these neurons ability to fire repetitively action potentials at high frequency. Moreover, in spontaneously silent putative nucleo-cortical DCNs, DTXs application induced depolarization and tonic firing. These results strongly suggest that Kv1 channels regulate GABAergic-DCNs activity and thereby can control previously unrecognized aspects of cerebellar function.


2018 ◽  
Vol 115 (28) ◽  
pp. 7434-7439 ◽  
Author(s):  
Simon Chamberland ◽  
Yulia Timofeeva ◽  
Alesya Evstratova ◽  
Kirill Volynski ◽  
Katalin Tóth

Neuronal communication relies on action potential discharge, with the frequency and the temporal precision of action potentials encoding information. Hippocampal mossy fibers have long been recognized as conditional detonators owing to prominent short-term facilitation of glutamate release displayed during granule cell burst firing. However, the spiking patterns required to trigger action potential firing in CA3 pyramidal neurons remain poorly understood. Here, we show that glutamate release from mossy fiber terminals triggers action potential firing of the target CA3 pyramidal neurons independently of the average granule cell burst frequency, a phenomenon we term action potential counting. We find that action potential counting in mossy fibers gates glutamate release over a broad physiological range of frequencies and action potential numbers. Using rapid Ca2+ imaging we also show that the magnitude of evoked Ca2+ influx stays constant during action potential trains and that accumulated residual Ca2+ is gradually extruded on a time scale of several hundred milliseconds. Using experimentally constrained 3D model of presynaptic Ca2+ influx, buffering, and diffusion, and a Monte Carlo model of Ca2+-activated vesicle fusion, we argue that action potential counting at mossy fiber boutons can be explained by a unique interplay between Ca2+ dynamics and buffering at release sites. This is largely determined by the differential contribution of major endogenous Ca2+ buffers calbindin-D28K and calmodulin and by the loose coupling between presynaptic voltage-gated Ca2+ channels and release sensors and the relatively slow Ca2+ extrusion rate. Taken together, our results identify a previously unexplored information-coding mechanism in the brain.


2020 ◽  
Vol 117 (39) ◽  
pp. 24526-24533
Author(s):  
Joana S. Ferreira ◽  
Julien P. Dupuis ◽  
Blanka Kellermayer ◽  
Nathan Bénac ◽  
Constance Manso ◽  
...  

Hippocampal pyramidal neurons are characterized by a unique arborization subdivided in segregated dendritic domains receiving distinct excitatory synaptic inputs with specific properties and plasticity rules that shape their respective contributions to synaptic integration and action potential firing. Although the basal regulation and plastic range of proximal and distal synapses are known to be different, the composition and nanoscale organization of key synaptic proteins at these inputs remains largely elusive. Here we used superresolution imaging and single nanoparticle tracking in rat hippocampal neurons to unveil the nanoscale topography of native GluN2A- and GluN2B-NMDA receptors (NMDARs)—which play key roles in the use-dependent adaptation of glutamatergic synapses—along the dendritic arbor. We report significant changes in the nanoscale organization of GluN2B-NMDARs between proximal and distal dendritic segments, whereas the topography of GluN2A-NMDARs remains similar along the dendritic tree. Remarkably, the nanoscale organization of GluN2B-NMDARs at proximal segments depends on their interaction with calcium/calmodulin-dependent protein kinase II (CaMKII), which is not the case at distal segments. Collectively, our data reveal that the nanoscale organization of NMDARs changes along dendritic segments in a subtype-specific manner and is shaped by the interplay with CaMKII at proximal dendritic segments, shedding light on our understanding of the functional diversity of hippocampal glutamatergic synapses.


2007 ◽  
Vol 98 (4) ◽  
pp. 2244-2254 ◽  
Author(s):  
Robert P. Bonin ◽  
Loren J. Martin ◽  
John F. MacDonald ◽  
Beverley A. Orser

GABAA receptors generate both phasic and tonic forms of inhibition. In hippocampal pyramidal neurons, GABAA receptors that contain the α5 subunit generate a tonic inhibitory conductance. The physiological role of this tonic inhibition is uncertain, although α5GABAA receptors are known to influence hippocampal-dependent learning and memory processes. Here we provide evidence that α5GABAA receptors regulate the strength of the depolarizing stimulus that is required to generate an action potential in pyramidal neurons. Neurons from α5 knock-out (α5−/−) and wild-type (WT) mice were studied in brain slices and cell cultures using whole cell and perforated-patch-clamp techniques. Membrane resistance was 1.6-fold greater in α5−/− than in WT neurons, but the resting membrane potential and chloride equilibrium potential were similar. Membrane hyperpolarization evoked by an application of exogenous GABA was greater in WT neurons. Inhibiting the function of α5GABAA receptor with nonselective (picrotoxin) or α5 subunit-selective (L-655,708) compounds depolarized WT neurons by ∼3 mV, whereas no change was detected in α5−/− neurons. The depolarizing current required to generate an action potential was twofold greater in WT than in α5−/− neurons, whereas the slope of the input-output relationship for action potential firing was similar. We conclude that shunting inhibition mediated by α5GABAA receptors regulates the firing of action potentials and may synchronize network activity that underlies hippocampal-dependent behavior.


2020 ◽  
Author(s):  
Martin Loynaz Prieto ◽  
Kamyar Firouzi ◽  
Butrus T. Khuri-Yakub ◽  
Daniel V. Madison ◽  
Merritt Maduke

ABSTRACTUltrasound can modulate action-potential firing in vivo and in vitro, but the mechanistic basis of this phenomenon is not well understood. To address this problem, we used patch-clamp recording to quantify the effects of focused, high-frequency (43 MHz) ultrasound on evoked action potential firing in CA1 pyramidal neurons in acute rodent hippocampal brain slices. We find that ultrasound can either inhibit or potentiate firing in a spike-frequency-dependent manner: at low (near-threshold) input currents and low firing frequencies, ultrasound inhibits firing, while at higher input currents and higher firing frequencies, ultrasound potentiates firing. The net result of these two competing effects is that ultrasound increases the threshold current for action potential firing, the slope of frequency-input curves, and the maximum firing frequency. In addition, ultrasound slightly hyperpolarizes the resting membrane potential, decreases action potential width, and increases the depth of the afterhyperpolarization. All of these results can be explained by the hypothesis that ultrasound activates a sustained potassium conductance. According to this hypothesis, increased outward potassium currents hyperpolarize the resting membrane potential and inhibit firing at near-threshold input currents, but potentiate firing in response to higher input currents by limiting inactivation of voltage-dependent sodium channels during the action potential. This latter effect is a consequence of faster action-potential repolarization, which limits inactivation of voltage-dependent sodium channels, and deeper (more negative) afterhyperpolarization, which increases the rate of recovery from inactivation. Based on these results we propose that ultrasound activates thermosensitive and mechanosensitive two-pore-domain potassium (K2P) channels, through heating or mechanical effects of acoustic radiation force. Finite-element modelling of the effects of ultrasound on brain tissue suggests that the effects of ultrasound on firing frequency are caused by a small (less than 2°C) increase in temperature, with possible additional contributions from mechanical effectsSUMMARYPrieto et al. describe how ultrasound can either inhibit or potentiate action potential firing in hippocampal pyramidal neurons and demonstrate that these effects can be explained by increased potassium conductance.


Sign in / Sign up

Export Citation Format

Share Document