scholarly journals Inhibition of the hypercapnic ventilatory response by adenosine in the retrotrapezoid nucleus in awake rats

2018 ◽  
Vol 138 ◽  
pp. 47-56 ◽  
Author(s):  
Bárbara Falquetto ◽  
Luiz M. Oliveira ◽  
Ana C. Takakura ◽  
Daniel K. Mulkey ◽  
Thiago S. Moreira
2004 ◽  
Vol 287 (6) ◽  
pp. R1407-R1418 ◽  
Author(s):  
Amy Hewitt ◽  
Rachel Barrie ◽  
Michael Graham ◽  
Kara Bogus ◽  
J. C. Leiter ◽  
...  

We tested the hypothesis that carbenoxolone, a pharmacological inhibitor of gap junctions, would reduce the ventilatory response to CO2 when focally perfused within the retrotrapezoid nucleus (RTN). We tested this hypothesis by measuring minute ventilation (VE), tidal volume (VT), and respiratory frequency (FR) responses to increasing concentrations of inspired CO2 (FiCO2 = 0–8%) in rats during wakefulness. We confirmed that the RTN was chemosensitive by perfusing the RTN unilaterally with either acetazolamide (AZ; 10 μM) or hypercapnic artificial cerebrospinal fluid equilibrated with 50% CO2 (pH ∼6.5). Focal perfusion of AZ or hypercapnic aCSF increased VE, VT, and FR during exposure to room air. Carbenoxolone (300 μM) focally perfused into the RTN decreased VE and VT in animals <11 wk of age, but VE and VT were increased in animals >12 wk of age. Glyzyrrhizic acid, a congener of carbenoxolone, did not change VE, VT, or FR when focally perfused into the RTN. Carbenoxolone binds to the mineralocorticoid receptor, but spironolactone (10 μM) did not block the disinhibition of VE or VT in older animals when combined with carbenoxolone. Thus the RTN is a CO2 chemosensory site in all ages tested, but the function of gap junctions in the chemosensory process varies substantially among animals of different ages: gap junctions amplify the ventilatory response to CO2 in younger animals, but appear to inhibit the ventilatory response to CO2 in older animals.


2019 ◽  
Vol 316 (3) ◽  
pp. L525-L536 ◽  
Author(s):  
Jianguo Zhuang ◽  
Na Zang ◽  
Chunyan Ye ◽  
Fadi Xu

The highly pathogenic H5N1 (HK483) viral infection causes a depressed hypercapnic ventilatory response (dHCVR, 20%↓) at 2 days postinfection (dpi) and death at 7 dpi in mice, but the relevant mechanisms are not fully understood. Glomus cells in the carotid body and catecholaminergic neurons in locus coeruleus (LC), neurokinin 1 receptor (NK1R)-expressing neurons in the retrotrapezoid nucleus (RTN), and serotonergic neurons in the raphe are chemosensitive and responsible for HCVR. We asked whether the dHCVR became worse over the infection period with viral replication in these cells/neurons. Mice intranasally inoculated with saline or the HK483 virus were exposed to hypercapnia for 5 min at 0, 2, 4, or 6 dpi, followed by immunohistochemistry to determine the expression of nucleoprotein of H5N1 influenza A (NP) alone and coupled with 1) tyrosine hydroxylase (TH) in the carotid body and LC, 2) NK1R in the RTN, and 3) tryptophan hydroxylase (TPH) in the raphe. HK483 viral infection blunted HCVR by ∼20, 50, and 65% at 2, 4, and 6 dpi. The NP was observed in the pontomedullary respiratory-related nuclei (but not in the carotid body) at 4 and 6 dpi, especially in 20% of RTN NK1R, 35% of LC TH, and ∼10% raphe TPH neurons. The infection significantly reduced the local NK1R or TPH immunoreactivity and population of neurons expressing NK1R or TPH. We conclude that the HK483 virus infects the pontomedullary respiratory nuclei, particularly chemosensitive neurons in the RTN, LC, and raphe, contributing to the severe depression of HCVR and respiratory failure at 6 dpi.


1997 ◽  
Vol 82 (2) ◽  
pp. 469-479 ◽  
Author(s):  
Manjapra R. Akilesh ◽  
Matthew Kamper ◽  
Aihua Li ◽  
Eugene E. Nattie

Akilesh, Manjapra R., Matthew Kamper, Aihua Li, and Eugene E. Nattie. Effects of unilateral lesions of retrotrapezoid nucleus on breathing in awake rats. J. Appl. Physiol. 82(2): 469–479, 1997.—In anesthetized rats, unilateral retrotrapezoid nucleus (RTN) lesions markedly decreased baseline phrenic activity and the response to CO2 (E. E. Nattie and A. Li. Respir. Physiol. 97: 63–77, 1994). Here we evaluate the effects of such lesions on resting breathing and on the response to hypercapnia and hypoxia in unanesthetized awake rats. We made unilateral injections [24 ± 7 (SE) nl] of ibotenic acid (IA; 50 mM), an excitatory amino acid neurotoxin, in the RTN region ( n = 7) located by stereotaxic coordinates and by field potentials induced by facial nerve stimulation. Controls ( n = 6) received RTN injections (80 ± 30 nl) of mock cerebrospinal fluid. A second control consisted of four animals with IA injections (24 ± 12 nl) outside the RTN region. Injected fluorescent beads allowed anatomic identification of lesion location. Using whole body plethysmography, we measured ventilation in the awake state during room air, 7% CO2 in air, and 10% O2 breathing before and for 3 wk after the RTN injections. There was no statistically significant effect of the IA injections on resting room air breathing in the lesion group compared with the control groups. We observed no apnea. The response to 7% CO2 in the lesion group compared with the control groups was significantly decreased, by 39% on average, for the final portion of the 3-wk study period. There was no lesion effect on the ventilatory response to 10% O2. In this unanesthetized model, other areas suppressed by anesthesia, e.g., the reticular activating system, hypothalamus, and perhaps the contralateral RTN, may provide tonic input to the respiratory centers that counters the loss of RTN activity.


2020 ◽  
Vol 133 (3) ◽  
pp. 559-568 ◽  
Author(s):  
Albert Dahan ◽  
C. Jan van Dam ◽  
Marieke Niesters ◽  
Monique van Velzen ◽  
Michael J. Fossler ◽  
...  

Background To improve understanding of the respiratory behavior of oliceridine, a μ-opioid receptor agonist that selectively engages the G-protein–coupled signaling pathway with reduced activation of the β-arrestin pathway, the authors compared its utility function with that of morphine. It was hypothesized that at equianalgesia, oliceridine will produce less respiratory depression than morphine and that this is reflected in a superior utility. Methods Data from a previous trial that compared the respiratory and analgesic effects of oliceridine and morphine in healthy male volunteers (n = 30) were reanalyzed. A population pharmacokinetic–pharmacodynamic analysis was performed and served as basis for construction of utility functions, which are objective functions of probability of analgesia, P(analgesia), and probability of respiratory depression, P(respiratory depression). The utility function = P(analgesia ≥ 0.5) – P(respiratory depression ≥ 0.25), where analgesia ≥ 0.5 is the increase in hand withdrawal latency in the cold pressor test by at least 50%, and respiratory depression ≥ 0.25 is the decrease of the hypercapnic ventilatory response by at least 25%. Values are median ± standard error of the estimate. Results The two drugs were equianalgesic with similar potency values (oliceridine: 27.9 ± 4.9 ng/ml; morphine 34.3 ± 9.7 ng/ml; potency ratio, 0.81; 95% CI, 0.39 to 1.56). A 50% reduction of the hypercapnic ventilatory response by morphine occurred at an effect-site concentration of 33.7 ± 4.8 ng/ml, while a 25% reduction by oliceridine occurred at 27.4 ± 3.5 ng/ml (potency ratio, 2.48; 95% CI, 1.65 to 3.72; P &lt; 0.01). Over the clinically relevant concentration range of 0 to 35 ng/ml, the oliceridine utility function was positive, indicating that the probability of analgesia exceeds the probability of respiratory depression. In contrast, the morphine function was negative, indicative of a greater probability of respiratory depression than analgesia. Conclusions These data indicate a favorable oliceridine safety profile over morphine when considering analgesia and respiratory depression over the clinical concentration range. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


Sign in / Sign up

Export Citation Format

Share Document