leptin signaling
Recently Published Documents


TOTAL DOCUMENTS

509
(FIVE YEARS 104)

H-INDEX

60
(FIVE YEARS 7)

2022 ◽  
Vol 12 ◽  
Author(s):  
Liwei Jiang ◽  
Mine Yilmaz ◽  
Mayuko Uehara ◽  
Cecilia B. Cavazzoni ◽  
Vivek Kasinath ◽  
...  

Lymph node (LN)-resident stromal cells play an essential role in the proper functioning of LNs. The stromal compartment of the LN undergoes significant compensatory changes to produce a milieu amenable for regulation of the immune response. We have identified a distinct population of leptin receptor-expressing (LepR+) stromal cells, located in the vicinity of the high endothelial venules (HEVs) and lymphatics. These LepR+ stromal cells expressed markers for fibroblastic reticular cells (FRCs), but they lacked markers for follicular dendritic cells (FDCs) and marginal reticular cells (MRCs). Leptin signaling deficiency led to heightened inflammatory responses within the LNs of db/db mice, leakiness of HEVs, and lymphatic fragmentation. Leptin signaling through the JAK/STAT pathway supported LN stromal cell survival and promoted the anti-inflammatory properties of these cells. Conditional knockout of the LepR+ stromal cells in LNs resulted in HEV and extracellular matrix (ECM) abnormalities. Treatment of ob/ob mice with an agonist leptin fusion protein restored the microarchitecture of LNs, reduced intra-LN inflammatory responses, and corrected metabolic abnormalities. Future studies are needed to study the importance of LN stomal cell dysfunction to the pathogenesis of inflammatory responses in type 2 diabetes (T2D) in humans.


Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Bernd Coester ◽  
Thomas A. Lutz ◽  
Christelle Le Foll

Amylin and leptin synergistically interact in the arcuate nucleus of the hypothalamus (ARC) to control energy homeostasis. Our previous rodent studies suggested that amylin-induced interleukin-6 release from hypothalamic microglia may modulate leptin signaling in agouti-related peptide expressing neurons. To confirm the physiological relevance of this finding, the calcitonin receptor (CTR) subunit of the amylin receptor was selectively depleted in microglia by crossing tamoxifen (Tx) inducible Cx3cr1-CreERT2 mice with CTR-floxed mice. Unexpectedly, male mice with CTR-depleted microglia (KO) gained the least amount of weight of all groups regardless of diet. However, after correcting for the tamoxifen effect, there was no significant difference for body weight, fat mass or lean mass between genotypes. No alteration in glucose tolerance or insulin release was detected. However, male KO mice had a reduced respiratory quotient suggesting a preference for fat as a fuel when fed a high fat diet. Importantly, amylin-induced pSTAT3 was decreased in the ARC of KO mice but this was not reflected in a reduced anorectic response. On the other hand, KO mice seemed to be less responsive to leptin’s anorectic effect while displaying similar ARC pSTAT3 as Tx-control mice. Together, these data suggest that microglial amylin signaling is not a major player in the control of energy homeostasis in mice.


2022 ◽  
Vol 12 ◽  
Author(s):  
Richard L. Londraville ◽  
Matthew Tuttle ◽  
Qin Liu ◽  
Janna M. Andronowski

The hypothesis advanced is that endospanin, a highly conserved vesicle traffic protein in vertebrates, regulates leptin sensitivity in bone signaling. The effects of leptin on bones are well-studied but without consensus on whether the increases in leptin signaling stimulate bone gain or loss. The bone response may depend on leptin sensitivity, and endospanin is an established modulator of leptin sensitivity. An argument is advanced to develop zebrafish models for specific leptin signaling pathways. Zebrafish have well-developed molecular tools (e.g., CRISPR) and the advantage of non-destructive sampling of bones in the form of scales. Using these tools, experiments are described to substantiate the role of endospanin in zebrafish bone dynamics.


2021 ◽  
Vol 12 ◽  
Author(s):  
Charles A. LeDuc ◽  
Alicja A. Skowronski ◽  
Michael Rosenbaum

LEP is a pleiotropic gene and the actions of leptin extend well beyond simply acting as the signal of the size of adipose tissue stores originally proposed. This is a discussion of the multi-system interactions of leptin with the development of the neural systems regulating energy stores, and the subsequent maintenance of energy stores throughout the lifespan. The prenatal, perinatal, and later postnatal effects of leptin on systems regulating body energy stores and on the energy stores themselves are heavily influenced by the nutritional environment which leptin exposure occurs. This review discusses the prenatal and perinatal roles of leptin in establishing the neuronal circuitry and other systems relevant to the adiposity set-point (or “threshold”) and the role of leptin in maintaining weight homeostasis in adulthood. Therapeutic manipulation of the intrauterine environment, use of leptin sensitizing agents, and identification of specific cohorts who may be more responsive to leptin or other means of activating the leptin signaling pathway are ripe areas for future research.


2021 ◽  
Author(s):  
Ying Liu ◽  
Yu-chen Xu ◽  
Yu-gui Cui ◽  
Shi-wen Jiang ◽  
Fei-yang Diao ◽  
...  

Background Polycystic ovary syndrome (PCOS) is a common reproductive and metabolic disorder characterized by high androgen levels. The aim of this study was to evaluate the effects of hyperandrogenism on the hypothalamus, and subsequently on the food intake and obesity in females. Methods A dihydroxy testosterone (DHT)-induced rat model was established to recapitulate the hyperandrogenism features of PCOS patients. Body weight and food intake of the rats were recorded. The food intake of DHT-induced rats was restricted by pair feeding to exclude possible effects of weight gain on the hypothalamus. The expression levels of relevant proteins and mRNAs in the hypothalamus, primary hypothalamic neurons exposed to DHT were analyzed by Western blotting and RT-PCR respectively. The leptin levels in serum and cerebrospinal fluid (CSF) were measured, and leptin was injected via the intracerebroventricular (ICV) route to test the leptin sensitivity of hypothalamus. Results The excessive pre-puberty androgen levels in the DHT-induced rats markedly elevated food intake prior to weight gain. Consistent with this, the expression of NPY and Agouti-related peptide (Agrp) mRNAs were up-regulated, which occurred prior to obesity and even with restricted food intake. In addition, the hypothalamic sensitivity to insulin and leptin was also impaired in the DHT-induced rats before obesity and with restricted food intake. DHT significantly reduced the leptin levels in the CSF, and ICV injection of leptin inhibited the DHT-induced increase in food intake. Conclusions Androgen excess increased food intake in rats and promoted obesity by down-regulating insulin and leptin signaling in the hypothalamus, most likely by suppressing leptin levels in the CSF.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lucia Mráziková ◽  
Barbora Neprašová ◽  
Anna Mengr ◽  
Andrea Popelová ◽  
Veronika Strnadová ◽  
...  

Obesity and type 2 diabetes mellitus (T2DM) are preconditions for the development of metabolic syndrome, which is reaching pandemic levels worldwide, but there are still only a few anti-obesity drugs available. One of the promising tools for the treatment of obesity and related metabolic complications is anorexigenic peptides, such as prolactin-releasing peptide (PrRP). PrRP is a centrally acting neuropeptide involved in food intake and body weight (BW) regulation. In its natural form, it has limitations for peripheral administration; thus, we designed analogs of PrRP lipidized at the N-terminal region that showed high binding affinities, increased stability and central anorexigenic effects after peripheral administration. In this review, we summarize the preclinical results of our chronic studies on the pharmacological role of the two most potent palmitoylated PrRP31 analogs in various mouse and rat models of obesity, glucose intolerance, and insulin resistance. We used mice and rats with diet-induced obesity fed a high-fat diet, which is considered to simulate the most common form of human obesity, or rodent models with leptin deficiency or disrupted leptin signaling in which long-term food intake regulation by leptin is distorted. The rodent models described in this review are models of metabolic syndrome with different severities, such as obesity or morbid obesity, prediabetes or diabetes and hypertension. We found that the effects of palmitoylated PrRP31 on food intake and BW but not on glucose intolerance require intact leptin signaling. Thus, palmitoylated PrRP31 analogs have potential as therapeutics for obesity and related metabolic complications.


2021 ◽  
Author(s):  
Bingbing Guo ◽  
Jiarui Liu ◽  
Bingwei Wang ◽  
Chenyu Zhang ◽  
Zhijie Su ◽  
...  

The increasing prevalence of obesity has resulted in demands for the development of new effective strategies for obesity treatment. The Withaferin A (WA) shows a great potential for prevention of obesity by sensitizing leptin signaling in the hypothalamus. However, the mechanism underlying the weight- and adiposity-reducing effects of WA remains to be elucidated. Here, we report that WA treatment induced white adipose tissue (WAT) browning, elevated energy expenditure (EE), decreased respiratory exchange ratio (RER), and prevented high-fat diet (HFD)-induced obesity. The sympathetic chemical denervation dampened the WAT browning and also impeded the reduction of adiposity in WA-treated mice. WA markedly up-regulated the levels of Prdm16 and FATP1 (Slc27a1) in the inguinal WAT (iWAT), and this was blocked by sympathetic denervation. Prdm16 or FATP1 knockdown in iWAT abrogated the WAT browning-inducing effects of WA, and restored the weight gain and adiposity in WA-treated mice. Together, these findings suggest that WA induces WAT browning through the sympathetic nerve-adipose axis; and the adipocytic Prdm16-FATP1 pathway mediates the promotive effects of WA on white adipose browning.


Author(s):  
Marek Adamowski ◽  
Karolina Wołodko ◽  
Joana Oliveira ◽  
Juan Castillo-Fernandez ◽  
Daniel Murta ◽  
...  

Obesity leads to ovarian dysfunction and the establishment of local leptin resistance. The aim of our study was to characterize the levels of NOD-like receptor protein 3 (NLRP3) inflammasome activation in ovaries and liver of mice during obesity progression. Furthermore, we tested the putative role of leptin on NLRP3 regulation in those organs. C57BL/6J female mice were treated with equine chorionic gonadotropin (eCG) or human chorionic gonadotropin (hCG) for estrous cycle synchronization and ovary collection. In diet-induced obesity (DIO) protocol, mice were fed chow diet (CD) or high-fat diet (HFD) for 4 or 16 weeks, whereas in the hyperleptinemic model (LEPT), mice were injected with leptin for 16 days (16 L) or saline (16 C). Finally, the genetic obese leptin-deficient ob/ob (+/? and −/−) mice were fed CD for 4 week. Either ovaries and liver were collected, as well as cumulus cells (CCs) after superovulation from DIO and LEPT. The estrus cycle synchronization protocol showed increased protein levels of NLRP3 and interleukin (IL)-18 in diestrus, with this stage used for further sample collections. In DIO, protein expression of NLRP3 inflammasome components was increased in 4 week HFD, but decreased in 16 week HFD. Moreover, NLRP3 and IL-1β were upregulated in 16 L and downregulated in ob/ob. Transcriptome analysis of CC showed common genes between LEPT and 4 week HFD modulating NLRP3 inflammasome. Liver analysis showed NLRP3 protein upregulation after 16 week HFD in DIO, but also its downregulation in ob/ob−/−. We showed the link between leptin signaling and NLRP3 inflammasome activation in the ovary throughout obesity progression in mice, elucidating the molecular mechanisms underpinning ovarian failure in maternal obesity.


2021 ◽  
Author(s):  
Bingbing Guo ◽  
Jiarui Liu ◽  
Bingwei Wang ◽  
Chenyu Zhang ◽  
Zhijie Su ◽  
...  

The increasing prevalence of obesity has resulted in demands for the development of new effective strategies for obesity treatment. The Withaferin A (WA) shows a great potential for prevention of obesity by sensitizing leptin signaling in the hypothalamus. However, the mechanism underlying the weight- and adiposity-reducing effects of WA remains to be elucidated. Here, we report that WA treatment induced white adipose tissue (WAT) browning, elevated energy expenditure (EE), decreased respiratory exchange ratio (RER), and prevented high-fat diet (HFD)-induced obesity. The sympathetic chemical denervation dampened the WAT browning and also impeded the reduction of adiposity in WA-treated mice. WA markedly up-regulated the levels of Prdm16 and FATP1 (Slc27a1) in the inguinal WAT (iWAT), and this was blocked by sympathetic denervation. Prdm16 or FATP1 knockdown in iWAT abrogated the WAT browning-inducing effects of WA, and restored the weight gain and adiposity in WA-treated mice. Together, these findings suggest that WA induces WAT browning through the sympathetic nerve-adipose axis; and the adipocytic Prdm16-FATP1 pathway mediates the promotive effects of WA on white adipose browning.


2021 ◽  
Vol 15 ◽  
Author(s):  
Noriko Shinjyo ◽  
Kiyoshi Kita

Metabolic syndromes are frequently associated with dementia, suggesting that the dysregulation of energy metabolism can increase the risk of neurodegeneration and cognitive impairment. In addition, growing evidence suggests the link between infections and brain disorders, including Alzheimer’s disease. The immune system and energy metabolism are in an intricate relationship. Infection triggers immune responses, which are accompanied by imbalance in cellular and organismal energy metabolism, while metabolic disorders can lead to immune dysregulation and higher infection susceptibility. In the brain, the activities of brain-resident immune cells, including microglia, are associated with their metabolic signatures, which may be affected by central nervous system (CNS) infection. Conversely, metabolic dysregulation can compromise innate immunity in the brain, leading to enhanced CNS infection susceptibility. Thus, infection and metabolic imbalance can be intertwined to each other in the etiology of brain disorders, including dementia. Insulin and leptin play pivotal roles in the regulation of immunometabolism in the CNS and periphery, and dysfunction of these signaling pathways are associated with cognitive impairment. Meanwhile, infectious complications are often comorbid with diabetes and obesity, which are characterized by insulin resistance and leptin signaling deficiency. Examples include human immunodeficiency virus (HIV) infection and periodontal disease caused by an oral pathogen Porphyromonas gingivalis. This review explores potential interactions between infectious agents and insulin and leptin signaling pathways, and discuss possible mechanisms underlying the relationship between infection, metabolic dysregulation, and brain disorders, particularly focusing on the roles of insulin and leptin.


Sign in / Sign up

Export Citation Format

Share Document