Excitatory stimulation of the right inferior parietal cortex lessens implicit religiousness/spirituality

2015 ◽  
Vol 70 ◽  
pp. 71-79 ◽  
Author(s):  
Cristiano Crescentini ◽  
Marilena Di Bucchianico ◽  
Franco Fabbro ◽  
Cosimo Urgesi
2006 ◽  
Vol 96 (6) ◽  
pp. 3016-3027 ◽  
Author(s):  
Michael Vesia ◽  
Jachin A. Monteon ◽  
Lauren E. Sergio ◽  
J. D. Crawford

Dorsal posterior parietal cortex (PPC) has been implicated through single-unit recordings, neuroimaging data, and studies of brain-damaged humans in the spatial guidance of reaching and pointing movements. The present study examines the causal effect of single-pulse transcranial magnetic stimulation (TMS) over the left and right dorsal posterior parietal cortex during a memory-guided “reach-to-touch” movement task in six human subjects. Stimulation of the left parietal hemisphere significantly increased endpoint variability, independent of visual field, with no horizontal bias. In contrast, right parietal stimulation did not increase variability, but instead produced a significantly systematic leftward directional shift in pointing (contralateral to stimulation site) in both visual fields. Furthermore, the same lateralized pattern persisted with left-hand movement, suggesting that these aspects of parietal control of pointing movements are spatially fixed. To test whether the right parietal TMS shift occurs in visual or motor coordinates, we trained subjects to point correctly to optically reversed peripheral targets, viewed through a left–right Dove reversing prism. After prism adaptation, the horizontal pointing direction for a given visual target reversed, but the direction of shift during right parietal TMS did not reverse. Taken together, these data suggest that induction of a focal current reveals a hemispheric asymmetry in the early stages of the putative spatial processing in PPC. These results also suggest that a brief TMS pulse modifies the output of the right PPC in motor coordinates downstream from the adapted visuomotor reversal, rather than modifying the upstream visual coordinates of the memory representation.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Pengxu Wei ◽  
Ruixue Bao

The insula is believed to be associated with touch-evoked effects. In this work, functional MRI was applied to investigate the network model of insula function when 20 normal subjects received tactile stimulation over segregated areas. Data analysis was performed with SPM8 and Conn toolbox. Activations in the contralateral posterior insula were consistently revealed for all stimulation areas, with the overlap located in area Ig2. The area Ig2 was then used as the seed to estimate the insula-associated network. The right insula, left superior parietal lobule, left superior temporal gyrus, and left inferior parietal cortex showed significant functional connectivity with the seed region for all stimulation conditions. Connectivity maps of most stimulation conditions were mainly distributed in the bilateral insula, inferior parietal cortex, and secondary somatosensory cortex. Post hoc ROI-to-ROI analysis and graph theoretical analysis showed that there were higher correlations between the left insula and the right insula, left inferior parietal cortex and right OP1 for all networks and that the global efficiency was more sensitive than the local efficiency to detect differences between notes in a network. These results suggest that the posterior insula serves as a hub to functionally connect other regions in the detected network and may integrate information from these regions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kento Hirayama ◽  
Takayuki Koga ◽  
Toru Takahashi ◽  
Rieko Osu

AbstractHand choices—deciding which hand to use to reach for targets—represent continuous, daily, unconscious decisions. The posterior parietal cortex (PPC) contralateral to the selected hand is activated during a hand-choice task, and disruption of left PPC activity with a single-pulse transcranial magnetic stimulation prior to the execution of the motion suppresses the choice to use the right hand but not vice versa. These findings imply the involvement of either bilateral or left PPC in hand choice. To determine whether the effects of PPC’s activity are essential and/or symmetrical in hand choice, we increased or decreased PPC excitability in 16 healthy participants using transcranial direct current stimulation (tDCS; 10 min, 2 mA, 5 × 7 cm) and examined its online and residual effects on hand-choice probability and reaction time. After the right PPC was stimulated with an anode and the left PPC with a cathode, the probability of left-hand choice significantly increased and reaction time significantly decreased. However, no significant changes were observed with the stimulation of the right PPC with a cathode and the left PPC with an anode. These findings, thus, reveal the asymmetry of PPC-mediated regulation in hand choice.


Sign in / Sign up

Export Citation Format

Share Document