Estradiol-17β-responsive A1 and A2 noradrenergic cells of the brain stem project to the bed nucleus of the stria terminalis in the ewe brain: A possible route for regulation of gonadotropin releasing hormone cells

Neuroscience ◽  
2010 ◽  
Vol 165 (3) ◽  
pp. 758-773 ◽  
Author(s):  
A. Pereira ◽  
J. Rawson ◽  
A. Jakubowska ◽  
I.J. Clarke
2008 ◽  
Vol 100 (6) ◽  
pp. 3429-3436 ◽  
Author(s):  
Frank Z. Nagy ◽  
Denis Paré

The amygdala and bed nucleus of the stria terminalis (BNST) are thought to subserve distinct functions, with the former mediating rapid fear responses to discrete sensory cues and the latter longer “anxiety-like” states in response to diffuse environmental contingencies. However, these structures are reciprocally connected and their projection sites overlap extensively. To shed light on the significance of BNST–amygdala connections, we compared the antidromic response latencies of BNST and central amygdala (CE) neurons to brain stem stimulation. Whereas the frequency distribution of latencies was unimodal in BNST neurons (∼10-ms mode), that of CE neurons was bimodal (∼10- and ∼30-ms modes). However, after stria terminalis (ST) lesions, only short-latency antidromic responses were observed, suggesting that CE axons with long conduction times course through the ST. Compared with the direct route, the ST greatly lengthens the path of CE axons to the brain stem, an apparently disadvantageous arrangement. Because BNST and CE share major excitatory basolateral amygdala (BL) inputs, lengthening the path of CE axons might allow synchronization of BNST and CE impulses to brain stem when activated by BL. To test this, we applied electrical BL stimuli and compared orthodromic response latencies in CE and BNST neurons. The latency difference between CE and BNST neurons to BL stimuli approximated that seen between the antidromic responses of BNST cells and CE neurons with long conduction times. These results point to a hitherto unsuspected level of temporal coordination between the inputs and outputs of CE and BNST neurons, supporting the idea of shared functions.


1999 ◽  
Vol 161 (3) ◽  
pp. 349-356 ◽  
Author(s):  
J Schulkin

Glucocorticoids regulate corticotropin-releasing hormone (CRH) gene expression in the placenta and the brain. In both the placenta and two extrahypothalamic sites in the brain (the amygdala and the bed nucleus of the stria terminalis), glucocorticoids elevate CRH gene expression. One functional role of the elevation of CRH by glucocorticoids may be to signal adversity. When CRH is over-expressed in the placenta, it may indicate that the pregnancy is in danger, and preterm labor may result. When CRH is over-expressed in the brains of animals, they may become more fearful. Both situations possibly reflect allostatic mechanisms and vulnerability to allostatic overload, a condition in which biological tissue may be compromised.


Sign in / Sign up

Export Citation Format

Share Document