Projections from the arcuate/ventromedial region of the hypothalamus to the preoptic area and bed nucleus of stria terminalis in the brain of the ewe; lack of direct input to gonadotropin-releasing hormone neurons

2001 ◽  
Vol 904 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Sueli Pompolo ◽  
John A. Rawson ◽  
Iain J. Clarke
1994 ◽  
Vol 72 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Glenda M. Wright ◽  
Kim M. McBurney ◽  
John H. Youson ◽  
Stacia A. Sower

Lamprey gonadotropin-releasing hormone was demonstrated in the brains of larval, metamorphic, and adult sea lampreys, Petromyzon marinus, using an immunoperoxidase technique. Gonadotropin-releasing hormone was observed in the neurohypophysis and preoptic area of the brain of larval, metamorphic, juvenile, and prespawning adults. The occurrence of immunoreactive cells and the intensity of the immunostaining was lowest in larvae, but by stage 5 of metamorphosis there was a marked increase in the prevalence and staining of these cells, which continued into adults. In larvae and lampreys in metamorphic stages 1–4, most immunoreactive fibres were confined to the dorsal region of the neurohypophysis. During stage 5 there was an expansion of immunopositive fibres into the ventral portion of the neurohypophysis. Prominent immunoreactivity was observed throughout the neurohypophysis from stage 5 onward through the adult stages. Changes in immunoreactivity of these cells and fibres in the brain and neurohypophysis correlate well with increased concentrations of hormone in the brain during development and with the timing of presumed changes in activity of cells in the adenohypophysis during metamorphosis.


1999 ◽  
Vol 161 (3) ◽  
pp. 349-356 ◽  
Author(s):  
J Schulkin

Glucocorticoids regulate corticotropin-releasing hormone (CRH) gene expression in the placenta and the brain. In both the placenta and two extrahypothalamic sites in the brain (the amygdala and the bed nucleus of the stria terminalis), glucocorticoids elevate CRH gene expression. One functional role of the elevation of CRH by glucocorticoids may be to signal adversity. When CRH is over-expressed in the placenta, it may indicate that the pregnancy is in danger, and preterm labor may result. When CRH is over-expressed in the brains of animals, they may become more fearful. Both situations possibly reflect allostatic mechanisms and vulnerability to allostatic overload, a condition in which biological tissue may be compromised.


2006 ◽  
Vol 291 (1) ◽  
pp. R53-R58 ◽  
Author(s):  
Steven L. Bealer ◽  
David L. Lipschitz ◽  
Gina Ramoz ◽  
William R. Crowley

Central oxytocin receptors (OTR) may be involved in adaptations of the brain oxytocin (OT) system during gestation, which are critical for systemic release of OT during parturition and lactation. We used quantitative autoradiography to determine changes in OTR binding in numerous brain sites during the course of gestation in the rat. Furthermore, to evaluate the importance of ovarian steroids in mediating pregnancy-related changes in OTR binding, we measured binding in ovariectomized animals treated with progesterone and/or estrogen, and in pregnant animals treated with exogenous progesterone during late gestation. We found that OTR binding was significantly increased in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) by midgestation ( day 15) compared with control. In addition, there was a further significant increase in OTR binding in these nuclei by late gestation ( day 20). The bed nucleus of the stria terminalis (BNST) and the medial preoptic area (MPOA) also showed significant gestation-associated increases in OTR binding, which were similar during mid- and late pregnancy. Treatment with exogenous progesterone throughout pregnancy did not alter the increase in OTR binding characteristic of late gestation in any of these brain sites. Finally, estrogen treatment in ovariectomized animals resulted in increased OTR binding in the SON, BNST, and MPOA, but not the PVN. These data demonstrate that OTR binding in the hypothalamus is increased during mid- and late-gestation, compared with ovariectomized control animals, which may be mediated by increased estradiol.


2014 ◽  
Vol 85 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Claudia Pinelli ◽  
Arun G. Jadhao ◽  
Saikat P. Biswas ◽  
Kazuyoshi Tsutsui ◽  
Biagio D''Aniello

Growing evidence suggests that gonadotropin-inhibitory hormone (GnIH) may play a key role in mediating vertebrate reproduction. GnIH inhibits gonadotropin synthesis and release by decreasing the activity of gonadotropin-releasing hormone (GnRH) neurons as well as by directly regulating gonadotropin secretion from the pituitary. Whereas the presence of GnIH has been widely investigated in various classes of vertebrates, there are very few immunohistochemical reports focusing on GnIH in amphibians. The aim of this study was to assess the presence and neuroanatomical distribution of GnIH-like immunoreactivity in the brain of the anuran amphibian Pelophylax (Rana) esculentus (esculenta) and to explore any potential anatomical relationship with mammalian GnRH-immunoreactive (mGnRH-ir) elements. The GnIH-like immunoreactive (GnIH-ir) system constitutes two distinct subpopulations in the telencephalon and diencephalon, with the highest number of immunoreactive cells located in the preoptic and suprachiasmatic areas. GnIH-ir neurons were also observed in the medial septum, the anterior commissure, the dorsal hypothalamus, the periventricular nucleus of the hypothalamus, and the posterior tuberculum. Scattered GnIH-ir fibers were present in all major subdivisions of the brain but only occasionally in the median eminence. mGnRH-ir neurons were distributed in the mediobasal telencephalon, the medial septal area, and the anterior preoptic area. Double-label immunohistochemistry revealed that the GnRH and GnIH systems coexist and have overlapping distributions at the level of the anterior preoptic area. Some GnIH-ir fibers were in close proximity to mGnRH-ir cell bodies. Our results suggest that both the neuroanatomy and the functional regulation of GnRH release are conserved properties of the hypothalamic GnIH-ir system among vertebrate species.


Sign in / Sign up

Export Citation Format

Share Document