axon injury
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 12)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Kadidia Pemba Adula ◽  
Matthew Shorey ◽  
Vasudha Chauhan ◽  
Khaled Nassman ◽  
Shu-Fan Chen ◽  
...  

The MAP3Ks Dual Leucine Kinase (DLK) and Leucine Zipper Kinase (LZK) are essential mediators of axon damage responses, but their responses are varied, complex, and incompletely understood. To characterize their functions in axon injury, we generated zebrafish mutants of each gene, labeled motor neurons (MN) and touch-sensing neurons in live zebrafish, precisely cut their axons with a laser, and assessed the ability of mutant axons to regenerate. DLK and LZK were required redundantly and cell autonomously for axon regeneration in MNs, but not in larval Rohon-Beard (RB) or adult dorsal root ganglion (DRG) sensory neurons. Surprisingly, in dlk lzk double mutants, the spared branches of wounded RB axons grew excessively, suggesting that these kinases inhibit regenerative sprouting in damaged axons. Uninjured trigeminal sensory axons also grew excessively in mutants when neighboring neurons were ablated, indicating that these MAP3Ks are general inhibitors of sensory axon growth. These results demonstrate that zebrafish DLK and LZK promote diverse injury responses, depending on the neuronal cell identity and type of axonal injury.


Neuron ◽  
2021 ◽  
Vol 109 (3) ◽  
pp. 393-395
Author(s):  
Julia Schaeffer ◽  
Stephane Belin
Keyword(s):  

2020 ◽  
Vol 21 (22) ◽  
pp. 8559
Author(s):  
Su-Hyuk Ko ◽  
Gilberto Gonzalez ◽  
Zhijie Liu ◽  
Lizhen Chen

Autophagy is a conserved pathway that plays a key role in cell homeostasis in normal settings, as well as abnormal and stress conditions. Autophagy dysfunction is found in various neurodegenerative diseases, although it remains unclear whether autophagy impairment is a contributor or consequence of neurodegeneration. Axonal injury is an acute neuronal stress that triggers autophagic responses in an age-dependent manner. In this study, we investigate the injury-triggered autophagy response in a C. elegans model of tauopathy. We found that transgenic expression of pro-aggregant Tau, but not the anti-aggregant Tau, abolished axon injury-induced autophagy activation, resulting in a reduced axon regeneration capacity. Furthermore, axonal trafficking of autophagic vesicles were significantly reduced in the animals expressing pro-aggregant F3ΔK280 Tau, indicating that Tau aggregation impairs autophagy regulation. Importantly, the reduced number of total or trafficking autophagic vesicles in the tauopathy model was not restored by the autophagy activator rapamycin. Loss of PTL-1, the sole Tau homologue in C. elegans, also led to impaired injury-induced autophagy activation, but with an increased basal level of autophagic vesicles. Therefore, we have demonstrated that Tau aggregation as well as Tau depletion both lead to disruption of injury-induced autophagy responses, suggesting that aberrant protein aggregation or microtubule dysfunction can modulate autophagy regulation in neurons after injury.


2020 ◽  
Vol 10 (9) ◽  
Author(s):  
Xiaohui Xia ◽  
Changlong Zhou ◽  
Xiaochuan Sun ◽  
Xuenong He ◽  
Chang Liu ◽  
...  
Keyword(s):  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Cheng-Hsin Liu ◽  
Sharon R Stevens ◽  
Lindsay H Teliska ◽  
Michael Stankewich ◽  
Peter J Mohler ◽  
...  

Clustered ion channels at nodes of Ranvier are critical for fast action potential propagation in myelinated axons. Axon-glia interactions converge on ankyrin and spectrin cytoskeletal proteins to cluster nodal Na+ channels during development. However, how nodal ion channel clusters are maintained is poorly understood. Here, we generated mice lacking nodal spectrins in peripheral sensory neurons to uncouple their nodal functions from their axon initial segment functions. We demonstrate a hierarchy of nodal spectrins, where β4 spectrin is the primary spectrin and β1 spectrin can substitute; each is sufficient for proper node organization. Remarkably, mice lacking nodal β spectrins have normal nodal Na+ channel clustering during development, but progressively lose Na+ channels with increasing age. Loss of nodal spectrins is accompanied by an axon injury response and axon deformation. Thus, nodal spectrins are required to maintain nodal Na+ channel clusters and the structural integrity of axons.


2019 ◽  
Vol 73 ◽  
pp. 100769 ◽  
Author(s):  
Stephanie B. Syc-Mazurek ◽  
Richard T. Libby
Keyword(s):  

2019 ◽  
Vol 116 (45) ◽  
pp. 22710-22720
Author(s):  
Lindsay S. Cahill ◽  
Monan Angela Zhang ◽  
Valeria Ramaglia ◽  
Heather Whetstone ◽  
Melika Pahlevan Sabbagh ◽  
...  

Experimental autoimmune encephalomyelitis (EAE) is the most common model of multiple sclerosis (MS). This model has been instrumental in understanding the events that lead to the initiation of central nervous system (CNS) autoimmunity. Though EAE has been an effective screening tool for identifying novel therapies for relapsing-remitting MS, it has proven to be less successful in identifying therapies for progressive forms of this disease. Though axon injury occurs in EAE, it is rapid and acute, making it difficult to intervene for the purpose of evaluating neuroprotective therapies. Here, we describe a variant of spontaneous EAE in the 2D2 T cell receptor transgenic mouse (2D2+ mouse) that presents with hind-limb clasping upon tail suspension and is associated with T cell-mediated inflammation in the posterior spinal cord and spinal nerve roots. Due to the mild nature of clinical signs in this model, we were able to maintain cohorts of mice into middle age. Over 9 mo, these mice exhibited a relapsing-remitting course of hind-limb clasping with the development of progressive motor deficits. Using a combined approach of ex vivo magnetic resonance (MR) imaging and histopathological analysis, we observed neurological progression to associate with spinal cord atrophy, synapse degradation, and neuron loss in the gray matter, as well as ongoing axon injury in the white matter of the spinal cord. These findings suggest that mild EAE coupled with natural aging may be a solution to better modeling the neurodegenerative processes seen in MS.


2019 ◽  
Vol 116 (32) ◽  
pp. 16074-16079 ◽  
Author(s):  
Soyeon Lee ◽  
Wei Wang ◽  
Jinyeon Hwang ◽  
Uk Namgung ◽  
Kyung-Tai Min

Translocation of the endoplasmic reticulum (ER) and mitochondria to the site of axon injury has been shown to facilitate axonal regeneration; however, the existence and physiological importance of ER–mitochondria tethering in the injured axons are unknown. Here, we show that a protein linking ER to mitochondria, the glucose regulated protein 75 (Grp75), is locally translated at axon injury site following axotomy, and that overexpression of Grp75 in primary neurons increases ER–mitochondria tethering to promote regrowth of injured axons. We find that increased ER–mitochondria tethering elevates mitochondrial Ca2+ and enhances ATP generation, thereby promoting regrowth of injured axons. Furthermore, intrathecal delivery of lentiviral vector encoding Grp75 to an animal with sciatic nerve crush injury enhances axonal regeneration and functional recovery. Together, our findings suggest that increased ER–mitochondria tethering at axonal injury sites may provide a therapeutic strategy for axon regeneration.


Sign in / Sign up

Export Citation Format

Share Document