spine shape
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 23)

H-INDEX

12
(FIVE YEARS 2)

Osteology ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-10
Author(s):  
José María González-Ruiz ◽  
Carlos A. Palancar ◽  
Federico Mata Escolano ◽  
Susanna Llido ◽  
Isabel Torres-Sanchez ◽  
...  

OsteogenesisImperfecta (OI) is a rare disease with respiratory problems, which are usually attributed to the secondary effects of scoliosis and rib fractures and to severe restrictive pulmonary disease. Conventional morphometry has already been studied in OI patients but three-dimensional geometric morphometrics (3D GMM) has never been used to assess how the thoracic spine shape changes during maximal breathing. A total of 6 adult subjects with OI type III and 16 healthy controls underwent a spirometric study and two computed tomography scans in maximal inspiration and expiration. Shape data by means of 3D GMM and Cobb angle values of scoliosis and kyphosis were obtained and their relationship with spirometric values was analysed using regressions and mean shape comparisons. No differences in kyphosis (p = 0.285) and scoliosis Cobb values (p = 0.407) were found between inspiration and expiration in OI patients. The 3D GMM analysis revealed significant shape differences between OI and control subjects (p < 0.001) that were related to the inspiration (p = 0.030) and not to the expiration (p = 0.079). Nevertheless, no significant relation was found between thoracic spine shape, scoliosis, kyphosis and breathing outcomes in both OI patients and controls. There were thoracic spine shape differences during maximal breathing between OI patients and controls that were mainly related to the inspiration.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 845
Author(s):  
Andreas Brandl ◽  
Christoph Egner ◽  
Robert Schleip

Background: Spine shape parameters, such as leg length and kyphotic or lordotic angle, are influenced by low back pain. There is also evidence that the thoracolumbar fascia plays a role in such pathologies. This study examined the immediate effects of a myofascial release (MFR) technique on the thoracolumbar fascia and of an osteopathic treatment (OMT) on postural parameters in patients with acute low back pain (aLBP). Methods: This study was a single-blind randomized placebo-controlled trial. Seventy-one subjects (43.8 ± 10.5 years) suffering from aLBP were randomly and blindedly assigned to three groups to be treated with MFR, OMT, or a placebo intervention. Spinal shape parameters (functional leg length discrepancy (fLLD), kyphotic angle, and lordotic angle) were measured before and after the intervention using video raster stereography. Results: Within the MFR group, fLLD reduced by 5.2 mm, p < 0.001 and kyphotic angle by 8.2 degrees, p < 0.001. Within the OMT group, fLLD reduced by 4.5 mm, p < 0.001, and kyphotic angle by 8.4°, p = 0.007. Conclusion: MFR and OMT have an influence on fLLD and the kyphotic angle in aLBP patients. The interventions could have a regulating effect on the impaired neuromotor control of the lumbar muscles.


Author(s):  
P Knott ◽  
XC Liu

The Adams Forward Bend Test recognizes the rotational aspect of the curve with the spine in flexion, and the AP X-ray measures the coronal plane deviation by using the Cobb Angle. However, modern techniques including CT-scan, biplanar radiograph, ultrasound, and surface topography allow the clinician to better evaluate and visualize the true 3-D nature of the spine. Surface Topography imaging uses the surface of the trunk to estimate the spine position using a mathematical algorithm that has been found to be accurate when compared to the radiologic Cobb Angle. The sagittal balance of the spine measured by surface topography is compared in three different situations, namely, “standing up straight,” “standing relaxed,” and “walking,” which will help to best assess posture and risk of proximal junctional kyphosis before and after the treatment. Coronal imbalance (lateral deviation) and a range of maximal vertebral surface rotation (amplitude in either direction) are considered as the parameters with an excellent to good reproducibility. COP displacement or symmetry from the midline is used to measure the stability of the trunk. Therefore, those selected spine shape parameters and COP deviation would be considered as the best descriptors in the assessment of postural sway and outcome of PSSE in children with AIS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haleh Alimohamadi ◽  
Miriam K. Bell ◽  
Shelley Halpain ◽  
Padmini Rangamani

Dendritic spines are small, bulbous protrusions along the dendrites of neurons and are sites of excitatory postsynaptic activity. The morphology of spines has been implicated in their function in synaptic plasticity and their shapes have been well-characterized, but the potential mechanics underlying their shape development and maintenance have not yet been fully understood. In this work, we explore the mechanical principles that could underlie specific shapes using a minimal biophysical model of membrane-actin interactions. Using this model, we first identify the possible force regimes that give rise to the classic spine shapes—stubby, filopodia, thin, and mushroom-shaped spines. We also use this model to investigate how the spine neck might be stabilized using periodic rings of actin or associated proteins. Finally, we use this model to predict that the cooperation between force generation and ring structures can regulate the energy landscape of spine shapes across a wide range of tensions. Thus, our study provides insights into how mechanical aspects of actin-mediated force generation and tension can play critical roles in spine shape maintenance.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yiqing Jia ◽  
Qili Zhao ◽  
Hongqiang Yin ◽  
Shan Guo ◽  
Mingzhu Sun ◽  
...  

The pattern abnormalities of dendritic spine, tiny protrusions on neuron dendrites, have been found related to multiple nervous system diseases, such as Parkinson's disease and schizophrenia. The determination of the factors affecting spine patterns is of vital importance to explore the pathogenesis of these diseases, and further, search the treatment method for them. Although the study of dendritic spines is a hot topic in neuroscience in recent years, there is still a lack of systematic study on the formation mechanism of its pattern. This paper provided a reinterpretation of reaction-diffusion model to simulate the formation process of dendritic spine, and further, study the factors affecting spine patterns. First, all four classic shapes of spines, mushroom-type, stubby-type, thin-type, and branched-type were reproduced using the model. We found that the consumption rate of substrates by the cytoskeleton is a key factor to regulate spine shape. Moreover, we found that the density of spines can be regulated by the amount of an exogenous activator and inhibitor, which is in accordance with the anatomical results found in hippocampal CA1 in SD rats with glioma. Further, we analyzed the inner mechanism of the above model parameters regulating the dendritic spine pattern through Turing instability analysis and drew a conclusion that an exogenous inhibitor and activator changes Turing wavelength through which to regulate spine densities. Finally, we discussed the deep regulation mechanisms of several reported regulators of dendritic spine shape and densities based on our simulation results. Our work might evoke attention to the mathematic model-based pathogenesis research for neuron diseases which are related to the dendritic spine pattern abnormalities and spark inspiration in the treatment research for these diseases.


Author(s):  
Edyta Kinel ◽  
Moreno D’Amico ◽  
Piero Roncoletta

BackgroundConservative treatment in the adolescent idiopathic scoliosis (AIS) population is based on individual proprioceptive and motor control training. Such training includes physiotherapeutic scoliosis-specific exercises (PSSEs) stimulating the individual capacity to perceive and control his/her posture, particularly the shape of the spine. However, limited knowledge about basic proprioception capability in AIS patients is reported in the literature.Questions(1) How do AIS patients, who did not receive any previous specific postural education treatment, perceive their posture and 3D spine shape? Are they able to modify their posture and 3D spine shape correctly through an instinctive self-correction (ISCO) maneuver? (2) Are posture and ISCO maneuver ability gender dependent in AIS patients? (3) Do AIS patients present different posture and spine shape characteristics as well as different ISCO ability compared with the healthy young adult population?MethodsCross-sectional observational study. 132 (75 females, 57 males) AIS patients’ posture and 3D spine shape have been measured comparing indifferent orthostasis (IO) (neutral erect posture) to ISCO using a non-ionizing 3D optoelectronic stereophotogrammetric approach. Thirteen quantitative biomechanical parameters described the AIS patients body posture. The statistical analysis was performed using a multivariate approach to compare genders in IO, ISCO, and AIS patients vs. healthy young adults–previously published data (57 females, 64 males).ResultsMales (87.7%) and females (93.3%) of AIS patients were unable to modify posture and 3D spine shape globally. AIS patients gender differences were found in IO, ISCO, and the comparison vs. healthy young adults. When changes occurred, subjects could not focus and control their posture globally, but only in a few aspects at a time.ConclusionSelf-correction maneuver producing an improvement in body posture and spine shape is not instinctive and must be trained. In such characteristics, AIS patients are not so dissimilar to healthy young adults. Sagittal plane control is the highest, but ISCO in AIS patients led to worsening in this plane. Control at the lumbar level is neglected in both genders. Such outcomes support the necessity of customized PSSEs to treat AIS patients. The 3D stereo-photogrammetric approach is effective in quantitatively describing the subject’s posture, motor control, and proprioception.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mayte Bonilla-Quintana ◽  
Florentin Wörgötter ◽  
Elisa D’Este ◽  
Christian Tetzlaff ◽  
Michael Fauth

AbstractDendritic spines change their size and shape spontaneously, but the function of this remains unclear. Here, we address this in a biophysical model of spine fluctuations, which reproduces experimentally measured spine fluctuations. For this, we characterize size- and shape fluctuations from confocal microscopy image sequences using autoregressive models and a new set of shape descriptors derived from circular statistics. Using the biophysical model, we extrapolate into longer temporal intervals and find the presence of 1/f noise. When investigating its origins, the model predicts that the actin dynamics underlying shape fluctuations self-organizes into a critical state, which creates a fine balance between static actin filaments and free monomers. In a comparison against a non-critical model, we show that this state facilitates spine enlargement, which happens after LTP induction. Thus, ongoing spine shape fluctuations might be necessary to react quickly to plasticity events.


2021 ◽  
Vol 18 (3) ◽  
pp. 123-129
Author(s):  
Jianming Lu ◽  
Liangliang Xiang ◽  
Huw Wiltshire

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Xiaobang Sun ◽  
Hongkai Wang ◽  
Weiying Wang ◽  
Nannan Li ◽  
Timo Hamalainen ◽  
...  

2021 ◽  
Vol 33 (7) ◽  
pp. 554-559
Author(s):  
Larry Cohen ◽  
Evangelos Pappas ◽  
Milena Simic ◽  
Kathryn Refshauge ◽  
Sarah Dennis

Sign in / Sign up

Export Citation Format

Share Document