Sensitivity of the prefrontal GABAergic system to chronic stress in male and female mice: Relevance for sex differences in stress-related disorders

Neuroscience ◽  
2016 ◽  
Vol 332 ◽  
pp. 1-12 ◽  
Author(s):  
Ryan Shepard ◽  
Chloe E. Page ◽  
Laurence Coutellier
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew Dieterich ◽  
Tonia Liu ◽  
Benjamin Adam Samuels

AbstractReward and motivation deficits are prominent symptoms in many mood disorders, including depression. Similar reward and effort-related choice behavioral tasks can be used to study aspects of motivation in both rodents and humans. Chronic stress can precipitate mood disorders in humans and maladaptive reward and motivation behaviors in male rodents. However, while depression is more prevalent in women, there is relatively little known about whether chronic stress elicits maladaptive behaviors in female rodents in effort-related motivated tasks and whether there are any behavioral sex differences. Chronic nondiscriminatory social defeat stress (CNSDS) is a variation of chronic social defeat stress that is effective in both male and female mice. We hypothesized that CNSDS would reduce effort-related motivated and reward behaviors, including reducing sensitivity to a devalued outcome, reducing breakpoint in progressive ratio, and shifting effort-related choice behavior. Separate cohorts of adult male and female C57BL/6 J mice were divided into Control or CNSDS groups, exposed to the 10-day CNSDS paradigm, and then trained and tested in instrumental reward or effort-related behaviors. CNSDS reduced motivation to lever press in progressive ratio and shifted effort-related choice behavior from a high reward to a more easily attainable low reward in both sexes. CNSDS caused more nuanced impairments in outcome devaluation. Taken together, CNSDS induces maladaptive shifts in effort-related choice and reduces motivated lever pressing in both sexes.


1969 ◽  
Vol 115 (3) ◽  
pp. 489-493
Author(s):  
D A Lewis

1. After the administration of large doses of androsterone, epiandrosterone, dehydroepiandrosterone and testosterone to mice, females excreted more of the dose conjugated with sulphuric acid than did males. 2. Liver slices from female mice conjugated androgens with sulphuric acid to a greater extent than did slices from males. 3. Sulphotransferase preparations from livers of female rats and mice catalysed the formation of dehydroepiandrosterone sulphate at a faster rate than preparations from livers of the male animals. 4. A possible explanation for the observed sex differences is discussed.


Author(s):  
Jazmin A Cole ◽  
Mackenzie N Kehmeier ◽  
Bradley R Bedell ◽  
Sahana Krishna Kumaran ◽  
Grant D Henson ◽  
...  

Abstract Vascular endothelial function declines with age on average, but there is high variability in the magnitude of this decline within populations. Measurements of frailty, known as frailty index (FI), can be used as surrogates for biological age, but it is unknown if frailty relates to the age-related decline in vascular function. To examine this relation, we studied young (4-9 months) and old (23-32 months) C57BL6 mice of both sexes. We found that FI was greater in old compared with young mice, but did not differ between old male and female mice. Middle cerebral artery (MCA) and mesenteric artery endothelium-dependent dilation (EDD) also did not differ between old male and female mice; however, there were sex differences in the relations between FI and EDD. For the MCA, FI was inversely related to EDD among old female mice, but not old male mice. In contrast, for the mesenteric artery, FI was inversely related to EDD among old male mice, but not old female mice. A higher FI was related to a greater improvement in EDD with the superoxide scavenger TEMPOL in the MCAs for old female mice and in the mesenteric arteries for old male mice. FI related to mesenteric artery gene expression negatively for extracellular superoxide dismutase (Sod3) and positively for interleukin-1β (Il1b). In summary, we found that the relation between frailty and endothelial function is dependent on sex and the artery examined. Arterial oxidative stress and pro-inflammatory signaling are potential mediators of the relations of frailty and endothelial function.


Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Jianming Wang ◽  
Sheetal Bodhankar ◽  
Halina Offner ◽  
Stephanie J Murphy

It is now increasingly clear that human stroke can have other serious consequences besides brain damage that can impact on patient survival and recovery. For example, many stroke patients succumb to CNS injury-induced immunodepression and fatal infections. Our prior work suggests that evolving cerebral ischemic injury elicits a cycle of injury from brain-to-spleen-to-brain that is strongly influenced by sex. We determined if splenic immunocytes are important in contributing to sex differences in post-ischemic brain injury. Male and female C57BL/6J mice were splenectomized 14 days before experimental stroke. Male and female mice with or without splenectomy (n=9-10 per group) then underwent 60 min of middle cerebral artery occlusion (MCAO) via intraluminal filament. Laser-Doppler flowmetry (LDF) was used to monitor cortical perfusion. All mice were euthanized and brains collected at 96 hours of reperfusion. Infarct volume (% corrected contralateral structure) was determined by image analysis of coronal brain slices stained with 2,3,5-triphenyltetrazolium chloride. Mean arterial blood pressure (MABP), blood gases (pH, P a O 2 , P a CO 2 ), and blood glucose were measured at 30 min MCAO and at 15 min of reperfusion in separate groups of male and female mice with or without splenectomy (n=5 per group). Relative LDF changes (% baseline), MABP, blood gases, and blood glucose during and after MCAO were comparable among the experimental groups. We observed that infarct volume in females (cortex, 41±4%; striatum, 55±6%) was smaller ( P <0.05) compared to males (cortex, 52±3%; striatum, 75±3%) at 96 hours of reperfusion. However, no differences (cortex, P =0.313; striatum, P =0.601) in infarct volume were seen between splenectomized male (cortex, 43±4%; striatum, 51±7%) and female (cortex, 38±4%; striatum, 46±5%) mice. Our data suggest that removal of all splenocyte lineages via splenectomy attenuates sex differences in post-ischemic brain injury. Future studies will evaluate the role of different splenic immunocyte subsets, such as T or B lymphocytes, on male vs. female ischemic brain outcomes. This study was supported by National Institutes of Health grant NS076013.


2019 ◽  
Vol 160 ◽  
pp. 107780 ◽  
Author(s):  
Christine N. Yohn ◽  
Sandra A. Ashamalla ◽  
Leshya Bokka ◽  
Mark M. Gergues ◽  
Alexander Garino ◽  
...  

2015 ◽  
Vol 308 (5) ◽  
pp. F400-F410 ◽  
Author(s):  
Nikhil Sharma ◽  
Lijun Li ◽  
C. M. Ecelbarger

High fructose intake has been associated with increased incidences of renal disease and hypertension, among other pathologies. Most fructose is cleared by the portal system and metabolized in the liver; however, systemic levels of fructose can rise with increased consumption. We tested whether there were sex differences in the renal responses to a high-fructose diet in mice. Two-month-old male and female C57BL6/129/SV mice ( n = 6 mice per sex per treatment) were randomized to receive control or high-fructose (65% by weight) diets as pelleted chow ad libitum for 3 mo. Fructose feeding did not significantly affect body weight but led to a 19% and 10% increase in kidney weight in male and female mice, respectively. In male mice, fructose increased the expression (∼50%) of renal cortical proteins involved in metabolism, including glucose transporter 5 (facilitative fructose transporter), ketohexokinase, and the insulin receptor (β-subunit). Female mice had lower basal levels of glucose transporter 5, which were unresponsive to fructose. However, female mice had increased urine volume and plasma K+ and decreased plasma Na+ with fructose, whereas male mice were less affected. Likewise, female mice showed a two- to threefold reduction in the expression Na+-K+-2Cl− cotransporter 2 in the thick ascending limb and aquaporin-2 in the collecting duct with fructose relative to female control mice, whereas male mice had no change. Overall, our results support greater proximal metabolism of fructose in male animals and greater distal tubule/collecting duct (electrolyte homeostasis) alterations in female animals. These sex differences may be important determinants of the specific nature of pathologies that develop in association with high fructose consumption.


Author(s):  
Diana Tavares-Ferreira ◽  
Pradipta R. Ray ◽  
Ishwarya Sankaranarayanan ◽  
Galo L. Mejia ◽  
Andi Wangzhou ◽  
...  

2019 ◽  
Author(s):  
Kristen Delevich ◽  
Christopher Hall ◽  
Josiah R. Boivin ◽  
David Piekarski ◽  
Yuting Zhang ◽  
...  

AbstractAdolescence is a developmental period that is associated with physical, cognitive, and affective maturation and a time when sex biases in multiple psychiatric diseases emerge. While puberty onset marks the initiation of adolescence, it is unclear whether the pubertal rise in gonadal hormones generates sex differences in approach-avoidance behaviors that may impact psychiatric vulnerability. To examine the influence of peripubertal gonadal hormone exposure on adult behavior, we removed the gonads or performed sham surgery in male and female mice just prior to puberty onset and assessed performance in an odor-guided foraging task and anxiety-related behaviors in adulthood. We observed no significant sex differences in foraging or anxiety-related behaviors between intact adult male and female mice but found significant differences between adult male and female mice that had been gonadectomized (GDX) prior to puberty. GDX males failed to acquire the odor-guided foraging task, showed reduced locomotion, and exhibited increased anxiety-like behavior, while GDX females showed the opposite pattern of behavior. These data suggest that similar approach-avoidance phenotypes are achieved in male and female mice via different mechanisms mediated by the sex-specific hormonal milieus during pubertal maturation.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Wendy Jent ◽  
Emily N. Burrage ◽  
Christian Price ◽  
Tyler Colbentz ◽  
Ryan Childers ◽  
...  

2010 ◽  
Vol 298 (1) ◽  
pp. F187-F195 ◽  
Author(s):  
Swasti Tiwari ◽  
Lijun Li ◽  
Shahla Riazi ◽  
Veerendra K. Madala Halagappa ◽  
Carolyn M. Ecelbarger

An increase in blood pressure (BP) due to angiotensin II (ANG II) infusion or other means is associated with adaptive pressure natriuresis due to reduced sodium reabsorption primarily in proximal tubule (PT) and thick ascending limb (TAL). We tested the hypothesis that male and female mice would show differential response to ANG II infusion with regard to the regulation of the protein abundance of sodium transporters in the PT and TAL and that these responses would be modulated by aging. Young (∼3 mo) and old (∼21 mo) male and female mice were infused with ANG II at 800 ng·kg body wt−1·min−1 by osmotic minipump for 7 days or received a sham operation. ANG II increased mean arterial pressure (MAP), measured by radiotelemetry, significantly more in male mice of both ages (increased ∼30–40 mmHg), compared with females (increased ∼15–25 mmHg). On day 1, MAP was also significantly increased in old mice, relative to young ( P = 0.01). ANG II infusion was associated with a significant decline in plasma testosterone (to <30% of control male) in male mice and rise in young female mice (to 478% of control female). No sex differences were found in the upregulation of the sodium hydrogen exchanger abundance on Western blots observed with ANG II infusion or the downregulation of the sodium phosphate cotransporter; however, aging did impact on some of these changes. Male mice (especially young) also had significantly reduced levels of the TAL bumetanide-sensitive Na-K-2Cl cotransporter (to 60% of male control), while young females showed an increase (to 126% of female control) with ANG II infusion. These sex differences do not support impaired pressure natriuresis in male mice, but might reflect a greater need and attempt to mount an appropriately BP-metered natriuretic response by additional downregulation of TAL sodium reabsorption.


Sign in / Sign up

Export Citation Format

Share Document