scholarly journals Prepubertal gonadectomy reveals sex differences in approach-avoidance behavior in adult mice

2019 ◽  
Author(s):  
Kristen Delevich ◽  
Christopher Hall ◽  
Josiah R. Boivin ◽  
David Piekarski ◽  
Yuting Zhang ◽  
...  

AbstractAdolescence is a developmental period that is associated with physical, cognitive, and affective maturation and a time when sex biases in multiple psychiatric diseases emerge. While puberty onset marks the initiation of adolescence, it is unclear whether the pubertal rise in gonadal hormones generates sex differences in approach-avoidance behaviors that may impact psychiatric vulnerability. To examine the influence of peripubertal gonadal hormone exposure on adult behavior, we removed the gonads or performed sham surgery in male and female mice just prior to puberty onset and assessed performance in an odor-guided foraging task and anxiety-related behaviors in adulthood. We observed no significant sex differences in foraging or anxiety-related behaviors between intact adult male and female mice but found significant differences between adult male and female mice that had been gonadectomized (GDX) prior to puberty. GDX males failed to acquire the odor-guided foraging task, showed reduced locomotion, and exhibited increased anxiety-like behavior, while GDX females showed the opposite pattern of behavior. These data suggest that similar approach-avoidance phenotypes are achieved in male and female mice via different mechanisms mediated by the sex-specific hormonal milieus during pubertal maturation.

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1999-P ◽  
Author(s):  
HYE LIM NOH ◽  
SUJIN SUK ◽  
RANDALL H. FRIEDLINE ◽  
KUNIKAZU INASHIMA ◽  
DUY A. TRAN ◽  
...  

1969 ◽  
Vol 115 (3) ◽  
pp. 489-493
Author(s):  
D A Lewis

1. After the administration of large doses of androsterone, epiandrosterone, dehydroepiandrosterone and testosterone to mice, females excreted more of the dose conjugated with sulphuric acid than did males. 2. Liver slices from female mice conjugated androgens with sulphuric acid to a greater extent than did slices from males. 3. Sulphotransferase preparations from livers of female rats and mice catalysed the formation of dehydroepiandrosterone sulphate at a faster rate than preparations from livers of the male animals. 4. A possible explanation for the observed sex differences is discussed.


Author(s):  
Jazmin A Cole ◽  
Mackenzie N Kehmeier ◽  
Bradley R Bedell ◽  
Sahana Krishna Kumaran ◽  
Grant D Henson ◽  
...  

Abstract Vascular endothelial function declines with age on average, but there is high variability in the magnitude of this decline within populations. Measurements of frailty, known as frailty index (FI), can be used as surrogates for biological age, but it is unknown if frailty relates to the age-related decline in vascular function. To examine this relation, we studied young (4-9 months) and old (23-32 months) C57BL6 mice of both sexes. We found that FI was greater in old compared with young mice, but did not differ between old male and female mice. Middle cerebral artery (MCA) and mesenteric artery endothelium-dependent dilation (EDD) also did not differ between old male and female mice; however, there were sex differences in the relations between FI and EDD. For the MCA, FI was inversely related to EDD among old female mice, but not old male mice. In contrast, for the mesenteric artery, FI was inversely related to EDD among old male mice, but not old female mice. A higher FI was related to a greater improvement in EDD with the superoxide scavenger TEMPOL in the MCAs for old female mice and in the mesenteric arteries for old male mice. FI related to mesenteric artery gene expression negatively for extracellular superoxide dismutase (Sod3) and positively for interleukin-1β (Il1b). In summary, we found that the relation between frailty and endothelial function is dependent on sex and the artery examined. Arterial oxidative stress and pro-inflammatory signaling are potential mediators of the relations of frailty and endothelial function.


Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Jianming Wang ◽  
Sheetal Bodhankar ◽  
Halina Offner ◽  
Stephanie J Murphy

It is now increasingly clear that human stroke can have other serious consequences besides brain damage that can impact on patient survival and recovery. For example, many stroke patients succumb to CNS injury-induced immunodepression and fatal infections. Our prior work suggests that evolving cerebral ischemic injury elicits a cycle of injury from brain-to-spleen-to-brain that is strongly influenced by sex. We determined if splenic immunocytes are important in contributing to sex differences in post-ischemic brain injury. Male and female C57BL/6J mice were splenectomized 14 days before experimental stroke. Male and female mice with or without splenectomy (n=9-10 per group) then underwent 60 min of middle cerebral artery occlusion (MCAO) via intraluminal filament. Laser-Doppler flowmetry (LDF) was used to monitor cortical perfusion. All mice were euthanized and brains collected at 96 hours of reperfusion. Infarct volume (% corrected contralateral structure) was determined by image analysis of coronal brain slices stained with 2,3,5-triphenyltetrazolium chloride. Mean arterial blood pressure (MABP), blood gases (pH, P a O 2 , P a CO 2 ), and blood glucose were measured at 30 min MCAO and at 15 min of reperfusion in separate groups of male and female mice with or without splenectomy (n=5 per group). Relative LDF changes (% baseline), MABP, blood gases, and blood glucose during and after MCAO were comparable among the experimental groups. We observed that infarct volume in females (cortex, 41±4%; striatum, 55±6%) was smaller ( P <0.05) compared to males (cortex, 52±3%; striatum, 75±3%) at 96 hours of reperfusion. However, no differences (cortex, P =0.313; striatum, P =0.601) in infarct volume were seen between splenectomized male (cortex, 43±4%; striatum, 51±7%) and female (cortex, 38±4%; striatum, 46±5%) mice. Our data suggest that removal of all splenocyte lineages via splenectomy attenuates sex differences in post-ischemic brain injury. Future studies will evaluate the role of different splenic immunocyte subsets, such as T or B lymphocytes, on male vs. female ischemic brain outcomes. This study was supported by National Institutes of Health grant NS076013.


2015 ◽  
Vol 308 (5) ◽  
pp. F400-F410 ◽  
Author(s):  
Nikhil Sharma ◽  
Lijun Li ◽  
C. M. Ecelbarger

High fructose intake has been associated with increased incidences of renal disease and hypertension, among other pathologies. Most fructose is cleared by the portal system and metabolized in the liver; however, systemic levels of fructose can rise with increased consumption. We tested whether there were sex differences in the renal responses to a high-fructose diet in mice. Two-month-old male and female C57BL6/129/SV mice ( n = 6 mice per sex per treatment) were randomized to receive control or high-fructose (65% by weight) diets as pelleted chow ad libitum for 3 mo. Fructose feeding did not significantly affect body weight but led to a 19% and 10% increase in kidney weight in male and female mice, respectively. In male mice, fructose increased the expression (∼50%) of renal cortical proteins involved in metabolism, including glucose transporter 5 (facilitative fructose transporter), ketohexokinase, and the insulin receptor (β-subunit). Female mice had lower basal levels of glucose transporter 5, which were unresponsive to fructose. However, female mice had increased urine volume and plasma K+ and decreased plasma Na+ with fructose, whereas male mice were less affected. Likewise, female mice showed a two- to threefold reduction in the expression Na+-K+-2Cl− cotransporter 2 in the thick ascending limb and aquaporin-2 in the collecting duct with fructose relative to female control mice, whereas male mice had no change. Overall, our results support greater proximal metabolism of fructose in male animals and greater distal tubule/collecting duct (electrolyte homeostasis) alterations in female animals. These sex differences may be important determinants of the specific nature of pathologies that develop in association with high fructose consumption.


Author(s):  
Diana Tavares-Ferreira ◽  
Pradipta R. Ray ◽  
Ishwarya Sankaranarayanan ◽  
Galo L. Mejia ◽  
Andi Wangzhou ◽  
...  

2010 ◽  
Vol 298 (4) ◽  
pp. H1146-H1154 ◽  
Author(s):  
Jianjie Wang ◽  
Susan Bingaman ◽  
Virginia H. Huxley

The importance of gonadal hormones in the regulation of vascular function has been documented. An alternate and essential contribution of the sex chromosomes to sex differences in vascular function is poorly understood. We reported previously sex differences in microvessel permeability ( Ps) responses to adenosine that were mediated by the cAMP signaling pathway (Wang J, PhD thesis, 2005; Wang J and Huxley V, Proceedings of the VIII World Congress of Microcirculation, 2007 ; Wang J and Huxley VH, Am J Physiol Heart Circ Physiol 291: H3094–H3105, 2006). The two cyclic nucleotides, cAMP and cGMP, central to the regulation of vascular barrier integrity, are hydrolyzed by phosphodiesterases (PDE). We hypothesized that microvascular endothelial cells (EC) would retain intrinsic and inheritable sexually dimorphic genes with respect to the PDEs modulating EC barrier function. Primary cultured microvascular EC from skeletal muscles isolated from male and female rats, respectively, were used. SRY (a sex-determining region Y gene) mRNA expression was observed exclusively in male, not female, cells. The predominant isoform among PDE1–5, present in both XY and XX EC, was PDE4. Expression mRNA levels of PDE1A (male > female) and PDE3B (male < female) were sex dependent; PDE2A, PDE4D, and PDE5A were sex independent. Barrier function, Ps, was determined from measures of albumin flux across confluent primary cultured microvessel XY and XX EC monolayers. Consistent with intact in situ microvessels, basal monolayer Ps did not differ between XY (1.7 ± 0.2 × 10−6 cm/s; n = 8) and XX (1.8 ± 0.1 × 10−6 cm/s; n = 10) EC. Cilostazol, a PDE3 inhibitor, reduced (11%, P < 0.05) Ps in XX, not XY, cells. These findings demonstrate the presence and maintenance of intrinsic sex-related differences in gene expression and cellular phenotype by microvascular EC in a gonadal-hormone-free environment. Furthermore, intrinsic cell-sex likely contributes significantly to sexual dimorphism in cardiovascular function.


NeuroImage ◽  
2014 ◽  
Vol 103 ◽  
pp. 454-461 ◽  
Author(s):  
Jenny Balog ◽  
Ulrike Matthies ◽  
Lisa Naumann ◽  
Mareike Voget ◽  
Christine Winter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document