Participation of Glutamatergic Ionotropic Receptors in Excitotoxicity: The Neuroprotective Role of Prolactin

Neuroscience ◽  
2021 ◽  
Vol 461 ◽  
pp. 180-193
Author(s):  
V. Rodriguez-Chavez ◽  
J. Moran ◽  
G. Molina-Salinas ◽  
W.A. Zepeda Ruiz ◽  
M.C. Rodriguez ◽  
...  
Keyword(s):  
Amino Acids ◽  
2003 ◽  
Vol 24 (4) ◽  
pp. 397-403 ◽  
Author(s):  
E. M. Sitniewska ◽  
R. J. Wi?niewska ◽  
K. Wi?niewski

2010 ◽  
Vol 112 (3) ◽  
pp. 729-741 ◽  
Author(s):  
John P. M. White ◽  
Mario Cibelli ◽  
Antonio Rei Fidalgo ◽  
Cleoper C. Paule ◽  
Faruq Noormohamed ◽  
...  

Pain originating in inflammation is the most common pathologic pain condition encountered by the anesthesiologist whether in the context of surgery, its aftermath, or in the practice of pain medicine. Inflammatory agents, released as components of the body's response to peripheral tissue damage or disease, are now known to be collectively capable of activating transient receptor potential vanilloid type 1, transient receptor potential vanilloid type 4, transient receptor potential ankyrin type 1, and acid-sensing ion channels, whereas individual agents may activate only certain of these ion channels. These ionotropic receptors serve many physiologic functions-as, indeed, do many of the inflammagens released in the inflammatory process. Here, we introduce the reader to the role of these ionotropic receptors in mediating peripheral pain in response to inflammation.


2016 ◽  
Vol 72 (12) ◽  
pp. 740-744
Author(s):  
Bogdan Feliks Kania ◽  
Danuta Wrońska

L-glutamate is one of major excitatory transmitters (along with aspartic, kainate acids and glycine) in the central nervous system and/or the peripheral nervous system. It mediates interaction through the stimulation of various ionotropic receptors families (ligand gated cation channels) and metabotropic receptor families (G-protein coupled). In this review, we describe the molecular composition of these glutamatergic receptors and discuss their neuropharmacology, particularly with respect to their roles in animal social behaviors and, particularly, in aggression. It is also known, that during aggression different interactions occur in the nervous system among glutamate, serotonin, vasopressin, oxytocin, dopamine, GABA and steroid receptors.


2000 ◽  
Vol 57 (11) ◽  
pp. 1551-1561 ◽  
Author(s):  
D.M. Kullmann ◽  
F. Asztely ◽  
M.C. Walker

JAMA ◽  
1966 ◽  
Vol 195 (12) ◽  
pp. 1005-1009 ◽  
Author(s):  
D. J. Fernbach
Keyword(s):  

JAMA ◽  
1966 ◽  
Vol 195 (3) ◽  
pp. 167-172 ◽  
Author(s):  
T. E. Van Metre

Sign in / Sign up

Export Citation Format

Share Document