Valence-dependent neural correlates of augmented feedback processing in extensive motor sequence learning – Part II: Predictive value of event-related potentials for behavioral adaptation and learning

Author(s):  
Linda Margraf ◽  
Daniel Krause ◽  
Matthias Weigelt
2018 ◽  
Vol 6 (s1) ◽  
pp. S138-S153 ◽  
Author(s):  
Michael Joch ◽  
Mathias Hegele ◽  
Heiko Maurer ◽  
Hermann Müller ◽  
Lisa K. Maurer

Motor learning can be monitored by observing the development of neural correlates of error processing. Among these neural correlates, the error- and feedback-related negativity (Ne/ERN and FRN) represent error processing mechanisms. While the Ne/ERN is more related to error prediction, the FRN is found after an error is manifested. The questions the current study strives to answer are: What information is needed by the system to make error predictions and how is this represented by the Ne/ERN and FRN in a complex motor task? We reduced the information and increased the difficulty level for the prediction in a semivirtual throwing task and found no Ne/ERN but a large FRN when the action result was finally observed (hitting or missing a target). We assume that uncertainty for error prediction was too high (either due to insufficient information or due to lacking prerequisites for prediction), such that error processing had to be mainly based on feedback. The finding is in line with the reinforcement theory of learning, after which Ne/ERN and FRN should behave complementary.


Author(s):  
Vesa Putkinen ◽  
Mari Tervaniemi

Studies conducted during the last three decades have identified numerous differences between musicians and non-musicians in neural correlates of sensory, motor, and higher-order cognitive functions. Research employing event-related potentials/fields has been particularly important in this framework. This chapter reviews the evidence that has emerged from these studies with emphasis on longitudinal studies comparing functional brain development in children taking music lessons and those engaged in non-musical activities. The literature provides empirical and theoretical grounds for concluding that musical training enhances sound encoding skills that are relevant for both music and speech processing. The question whether the benefits of musical training transfer to more distantly related cognitive functions remains controversial, however. Finally, it appears likely that training-induced plasticity alone does not account for the differences in brain function between musicians and non-musicians and, conversely, that predisposing factors also play a role.


2019 ◽  
Vol 14 (10) ◽  
pp. 1073-1086 ◽  
Author(s):  
Sebastian Schindler ◽  
Gregory A Miller ◽  
Johanna Kissler

Abstract In the age of virtual communication, the source of a message is often inferred rather than perceived, raising the question of how sender attributions affect content processing. We investigated this issue in an evaluative feedback scenario. Participants were told that an expert psychotherapist, a layperson or a randomly acting computer was going to give them online positive, neutral or negative personality feedback while high-density EEG was recorded. Sender attribution affected processing rapidly, even though the feedback was on average identical. Event-related potentials revealed a linear increase with attributed expertise beginning 150 ms after disclosure and most pronounced for N1, P2 and early posterior negativity components. P3 and late positive potential amplitudes were increased for both human senders and for emotionally significant (positive or negative) feedback. Strikingly, feedback from a putative expert prompted large P3 responses, even for inherently neutral content. Source analysis localized early enhancements due to attributed sender expertise in frontal and somatosensory regions and later responses in the posterior cingulate and extended visual and parietal areas, supporting involvement of mentalizing, embodied processing and socially motivated attention. These findings reveal how attributed sender expertise rapidly alters feedback processing in virtual interaction and have implications for virtual therapy and online communication.


2020 ◽  
Vol 15 (3) ◽  
pp. 285-291 ◽  
Author(s):  
Ruolei Gu ◽  
Xiang Ao ◽  
Licheng Mo ◽  
Dandan Zhang

Abstract Social anxiety has been associated with abnormalities in cognitive processing in the literature, manifesting as various cognitive biases. To what extent these biases interrupt social interactions remains largely unclear. This study used the Social Judgment Paradigm that could separate the expectation and experience stages of social feedback processing. Event-related potentials (ERPs) in these two stages were recorded to detect the effect of social anxiety that might not be reflected by behavioral data. Participants were divided into two groups according to their social anxiety level. Participants in the high social anxiety (HSA) group were more likely to predict that they would be socially rejected by peers than did their low social anxiety (LSA) counterparts (i.e. the control group). Compared to the ERP data of the LSA group, the HSA group showed: (a) a larger P1 component to social cues (peer faces) prior to social feedback presentation, possibly indicating an attention bias; (b) a difference in feedback-related negativity amplitude between unexpected social acceptance and unexpected social rejection, possibly indicating an expectancy bias; and (c) a diminished sensitivity of the P3 amplitude to social feedback valence (be accepted/be rejected), possibly indicating an experience bias. These results could help understand the cognitive mechanisms that comprise and maintain social anxiety.


2013 ◽  
Vol 22 (1) ◽  
pp. 22-34 ◽  
Author(s):  
Qiufang Fu ◽  
Guangyu Bin ◽  
Zoltan Dienes ◽  
Xiaolan Fu ◽  
Xiaorong Gao

2009 ◽  
Vol 21 (7) ◽  
pp. 1435-1446 ◽  
Author(s):  
Dominique Lamy ◽  
Moti Salti ◽  
Yair Bar-Haim

The aim of the present study was to dissociate the ERP (Event Related Potentials) correlates of subjective awareness from those of unconscious perception. In a backward masking paradigm, participants first produced a forced-choice response to the location of a liminal target presented for an individually calibrated duration, and then reported on their subjective awareness of the target's presence. We recorded (Event-Related Potentials) ERPs and compared the ERP waves when observers reported being aware vs. unaware of the target but localized it correctly, thereby isolating the neural correlates of subjective awareness while controlling for differences in objective performance. In addition, we compared the ERPs when participants were subjectively unaware of the target's presence and localized it correctly versus incorrectly, thereby isolating the neural correlates of unconscious perception. All conditions involved stimuli that were physically identical and were presented for the same duration. Both behavioral measures were associated with modulation of the amplitude of the P3 component of the ERP. Importantly, this modulation was widely spread across all scalp locations for subjective awareness, but was restricted to the parietal electrodes for unconscious perception. These results indicate that liminal stimuli that do not affect performance undergo considerable processing and that subjective awareness is associated with a late wave of activation with widely distributed topography.


Sign in / Sign up

Export Citation Format

Share Document