Energy calibration of energy-resolved photon-counting pixel detectors using laboratory polychromatic x-ray beams

Author(s):  
Hanbean Youn ◽  
Jong Chul Han ◽  
Soohwa Kam ◽  
Seungman Yun ◽  
Ho Kyung Kim
2022 ◽  
Vol 17 (01) ◽  
pp. C01036
Author(s):  
P. Grybos ◽  
R. Kleczek ◽  
P. Kmon ◽  
A. Krzyzanowska ◽  
P. Otfinowski ◽  
...  

Abstract This paper presents a readout integrated circuit (IC) of pixel architecture called MPIX (Multithreshold PIXels), designed for CdTe pixel detectors used in X-ray imaging applications. The MPIX IC area is 9.6 mm × 20.3 mm and it is designed in a CMOS 130 nm process. The IC core is a matrix of 96 × 192 square-shaped pixels of 100 µm pitch. Each pixel contains a fast analog front-end followed by four independently working discriminators and four 12-bit ripple counters. Such pixel architecture allows photon processing one by one and selecting the X-ray photons according to their energy (X-ray colour imaging). To fit the different range of applications the MPIX IC has 8 possible different gain settings, and it can process the X-ray photons of energy up to 154 keV. The MPIX chip is bump-bonded to the CdTe 1.5 mm thick pixel sensor with a pixel pitch of 100 µm. To deal with the charge sharing effect coming from a thick semiconductor pixel sensor, multithreshold pattern recognition algorithm is implemented in the readout IC. The implemented algorithm operates both in the analog domain (to recover the total charge spread between neighboring pixels, when a single X-ray photon hits the border of the pixel) and in the digital domain (to allocate a hit position to a single pixel).


2020 ◽  
Vol 27 (2) ◽  
pp. 319-328 ◽  
Author(s):  
Leonardo Abbene ◽  
Fabio Principato ◽  
Gaetano Gerardi ◽  
Antonino Buttacavoli ◽  
Donato Cascio ◽  
...  

In this work, the spectroscopic performances of new cadmium–zinc–telluride (CZT) pixel detectors recently developed at IMEM-CNR of Parma (Italy) are presented. Sub-millimetre arrays with pixel pitch less than 500 µm, based on boron oxide encapsulated vertical Bridgman grown CZT crystals, were fabricated. Excellent room-temperature performance characterizes the detectors even at high-bias-voltage operation (9000 V cm−1), with energy resolutions (FWHM) of 4% (0.9 keV), 1.7% (1 keV) and 1.3% (1.6 keV) at 22.1, 59.5 and 122.1 keV, respectively. Charge-sharing investigations were performed with both uncollimated and collimated synchrotron X-ray beams with particular attention to the mitigation of the charge losses at the inter-pixel gap region. High-rate measurements demonstrated the absence of high-flux radiation-induced polarization phenomena up to 2 × 106 photons mm−2 s−1. These activities are in the framework of an international collaboration on the development of energy-resolved photon-counting systems for high-flux energy-resolved X-ray imaging.


2004 ◽  
Vol 51 (4) ◽  
pp. 1717-1723 ◽  
Author(s):  
M. Locker ◽  
P. Fischer ◽  
S. Krimmel ◽  
H. Kruger ◽  
M. Lindner ◽  
...  

2016 ◽  
Vol 23 (1) ◽  
pp. 206-213 ◽  
Author(s):  
Jean Rinkel ◽  
Debora Magalhães ◽  
Franz Wagner ◽  
Florian Meneau ◽  
Flavio Cesar Vicentin

Synchrotron-radiation-based X-ray imaging techniques using tender X-rays are facing a growing demand, in particular to probe theKabsorption edges of low-Zelements. Here, a mathematical model has been developed for estimating the detective quantum efficiency (DQE) at zero spatial frequency in the tender X-ray energy range for photon-counting detectors by taking into account the influence of electronic noise. The experiments were carried out with a Medipix3RX ASIC bump-bonded to a 300 µm silicon sensor at the Soft X-ray Spectroscopy beamline (D04A-SXS) of the Brazilian Synchrotron Light Laboratory (LNLS, Campinas, Brazil). The results show that Medipix3RX can be used to develop new imaging modalities in the tender X-ray range for energies down to 2 keV. The efficiency and optimal DQE depend on the energy and flux of the photons. The optimal DQE values were found in the 7.9–8.6 keV photon energy range. The DQE deterioration for higher energies due to the lower absorption efficiency of the sensor and for lower energies due to the electronic noise has been quantified. The DQE for 3 keV photons and 1 × 104 photons pixel−1s−1is similar to that obtained with 19 keV photons. Based on our model, the use of Medipix3RX could be extended down to 2 keV which is crucial for coming applications in imaging techniques at modern synchrotron sources.


2015 ◽  
Vol 62 (1) ◽  
pp. 68-75 ◽  
Author(s):  
Xuejin Liu ◽  
Han Chen ◽  
Hans Bornefalk ◽  
Mats Danielsson ◽  
Staffan Karlsson ◽  
...  

2008 ◽  
Vol 57 (7) ◽  
pp. 1438-1444 ◽  
Author(s):  
M. Perenzoni ◽  
D. Stoppa ◽  
M. Malfatti ◽  
A. Simoni

Sign in / Sign up

Export Citation Format

Share Document