Characterisation of the HEXITEC4S X-ray spectroscopic imaging detector incorporating through-silicon via (TSV) technology

Author(s):  
M.C. Veale ◽  
P. Booker ◽  
I. Church ◽  
L.L. Jones ◽  
J. Lipp ◽  
...  
2018 ◽  
Vol 31 (6) ◽  
pp. 28-32 ◽  
Author(s):  
M. C. Veale ◽  
P. Seller ◽  
M. Wilson ◽  
E. Liotti

2022 ◽  
Vol 17 (01) ◽  
pp. P01012
Author(s):  
L. Jowitt ◽  
M. Wilson ◽  
P. Seller ◽  
C. Angelsen ◽  
R.M. Wheater ◽  
...  

Abstract HEXITEC is a spectroscopic imaging X-ray detector technology developed at the STFC Rutherford Appleton Laboratory for X-ray and γ-ray spectroscopic imaging applications. Each module has 80 × 80 pixels on a 250 μm pixel pitch, and has been implemented successfully in a number of applications. This paper presents the HEXITEC 2 × 2 detector system, a tiled array of 4 HEXITEC modules read out simultaneously, which provides an active area of 16 cm2. Systems have been produced using 1 mm thick Cadmium Telluride (CdTe) and 2 mm thick Cadmium Zinc Telluride (CdZnTe) sensor material. In this paper the system and data processing methods are presented, and the performance of the systems are evaluated. The detectors were energy calibrated using an 241Am sealed source. Three types of charge sharing correction were applied to the data-charge sharing addition (CSA), charge sharing discrimination (CSD), and energy curve correction (ECC) which compensates for energy lost in the inter-pixel region. ECC recovers an additional 34 % of counts in the 59.5 keV peak in CdTe compared to the use of CSD; an important improvement for photon-starved applications. Due to the high frame rate of the camera system (6.3 kHz) an additional End of Frame (EOF) correction was also applied to 6.0 % of events to correct for signals that were readout whilst the signal was still forming. After correction, both detector materials were found to have excellent spectroscopic performance with a mean energy resolution (FWHM) of 1.17 keV and 1.16 keV for CdZnTe and CdTe respectively. These results successfully demonstrate the ability to construct tiled arrays of HEXITEC modules to provide larger imaging areas.


1983 ◽  
Vol 208 (1-3) ◽  
pp. 427-433 ◽  
Author(s):  
M.G. Fedotov ◽  
E.A. Kuper ◽  
V.N. Litvinenko ◽  
V.E. Panchenko ◽  
V.A. Ushakov

2016 ◽  
Vol 49 (1) ◽  
pp. 182-187 ◽  
Author(s):  
J. Todt ◽  
H. Hammer ◽  
B. Sartory ◽  
M. Burghammer ◽  
J. Kraft ◽  
...  

Synchrotron X-ray nanodiffraction is used to analyse residual stress distributions in a 200 nm-thick W film deposited on the scalloped inner wall of a through-silicon via. The diffraction data are evaluated using a novel dedicated methodology which allows the quantification of axial and tangential stress components under the condition that radial stresses are negligible. The results reveal oscillatory axial stresses in the range of ∼445–885 MPa, with a distribution that correlates well with the scallop wavelength and morphology, as well as nearly constant tangential stresses of ∼800 MPa. The discrepancy with larger stress values obtained from a finite-element model, as well as from a blanket W film, is attributed to the morphology and microstructural nature of the W film in the via.


2004 ◽  
Vol 33 (6) ◽  
pp. 645-650 ◽  
Author(s):  
M. Niraula ◽  
K. Yasuda ◽  
Y. Nakanishi ◽  
K. Uchida ◽  
T. Mabuchi ◽  
...  

2019 ◽  
Vol 66 (1) ◽  
pp. 518-523
Author(s):  
Madan Niraula ◽  
Kazuhito Yasuda ◽  
Shintaro Tsubota ◽  
Taiki Yamaguchi ◽  
Junya Ozawa ◽  
...  

2021 ◽  
Vol 4 (9) ◽  
pp. 681-688
Author(s):  
Sarah Deumel ◽  
Albert van Breemen ◽  
Gerwin Gelinck ◽  
Bart Peeters ◽  
Joris Maas ◽  
...  

AbstractTo realize the potential of artificial intelligence in medical imaging, improvements in imaging capabilities are required, as well as advances in computing power and algorithms. Hybrid inorganic–organic metal halide perovskites, such as methylammonium lead triiodide (MAPbI3), offer strong X-ray absorption, high carrier mobilities (µ) and long carrier lifetimes (τ), and they are promising materials for use in X-ray imaging. However, their incorporation into pixelated sensing arrays remains challenging. Here we show that X-ray flat-panel detector arrays based on microcrystalline MAPbI3 can be created using a two-step manufacturing process. Our approach is based on the mechanical soft sintering of a freestanding absorber layer and the subsequent integration of this layer on a pixelated backplane. Freestanding microcrystalline MAPbI3 wafers exhibit a sensitivity of 9,300 µC Gyair–1 cm–2 with a μτ product of 4 × 10–4 cm2 V–1, and the resulting X-ray imaging detector, which has 508 pixels per inch, combines a high spatial resolution of 6 line pairs per millimetre with a low detection limit of 0.22 nGyair per frame.


Sign in / Sign up

Export Citation Format

Share Document