sealed source
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 6)

H-INDEX

4
(FIVE YEARS 1)

2022 ◽  
Vol 17 (01) ◽  
pp. P01012
Author(s):  
L. Jowitt ◽  
M. Wilson ◽  
P. Seller ◽  
C. Angelsen ◽  
R.M. Wheater ◽  
...  

Abstract HEXITEC is a spectroscopic imaging X-ray detector technology developed at the STFC Rutherford Appleton Laboratory for X-ray and γ-ray spectroscopic imaging applications. Each module has 80 × 80 pixels on a 250 μm pixel pitch, and has been implemented successfully in a number of applications. This paper presents the HEXITEC 2 × 2 detector system, a tiled array of 4 HEXITEC modules read out simultaneously, which provides an active area of 16 cm2. Systems have been produced using 1 mm thick Cadmium Telluride (CdTe) and 2 mm thick Cadmium Zinc Telluride (CdZnTe) sensor material. In this paper the system and data processing methods are presented, and the performance of the systems are evaluated. The detectors were energy calibrated using an 241Am sealed source. Three types of charge sharing correction were applied to the data-charge sharing addition (CSA), charge sharing discrimination (CSD), and energy curve correction (ECC) which compensates for energy lost in the inter-pixel region. ECC recovers an additional 34 % of counts in the 59.5 keV peak in CdTe compared to the use of CSD; an important improvement for photon-starved applications. Due to the high frame rate of the camera system (6.3 kHz) an additional End of Frame (EOF) correction was also applied to 6.0 % of events to correct for signals that were readout whilst the signal was still forming. After correction, both detector materials were found to have excellent spectroscopic performance with a mean energy resolution (FWHM) of 1.17 keV and 1.16 keV for CdZnTe and CdTe respectively. These results successfully demonstrate the ability to construct tiled arrays of HEXITEC modules to provide larger imaging areas.


2021 ◽  
Vol 59 (1) ◽  
pp. 44-48
Author(s):  
Ahmed El-Gharbawy ◽  
M. Mostafa ◽  
M. El-Absy ◽  
Ebtsam Saad

Nukleonika ◽  
2021 ◽  
Vol 66 (1) ◽  
pp. 21-27
Author(s):  
Mohammed Siddig H. Mohammed ◽  
Essam M. Banoqitah ◽  
Ezzat Elmoujarkach ◽  
Abdulsalam M. Alhawsawi ◽  
Fathi Djouider

Abstract Radioactive sealed sources and radiotracer techniques are used to diagnose industrial process units. This work introduces a workspace to simulate four sealed sources and radiotracer applications, namely, gamma scanning of distillation columns, gamma scanning of pipes, gamma transmission tomography, and radiotracer flow rate measurements. The workspace was created in Geant4 Application for Tomographic Emission (GATE) simulation toolkit and was called Industrial Radioisotope Applications Virtual Laboratory. The flexibility of GATE and the fact that it is an open-source software render it advantageous to radioisotope technology practitioners, educators, and students. The comparison of the simulation results with experimental results that are available in the literature showed the effectiveness of the virtual laboratory.


2019 ◽  
Vol 61 (6) ◽  
pp. 741-747
Author(s):  
M. Mostafa ◽  
M. A. Tawfic ◽  
M. A. El-Absy ◽  
H. E. Ramadan ◽  
S. A. Sadeek
Keyword(s):  

Nukleonika ◽  
2017 ◽  
Vol 62 (4) ◽  
pp. 277-283
Author(s):  
Vivek Yelgaonkar ◽  
Gaurav Agrahari ◽  
Dhakar Vikrant ◽  
Rao Prasanna ◽  
B. K. Pathak

Abstract Gamma scanning and radiotracer applications are very effective and inexpensive tools to understand and optimize the process as well as troubleshoot the various types of problems in many chemical, petrochemical industries and refineries. These techniques are non-invasive; hence, the problems can be pinpointed online, which leads to reduce the downtime, schedule the shutdown and maintenance of the plant equipment, rendering huge economic benefits. In a leading refinery of India, the catalytic cracking unit (CCU) was malfunctioning. It was suspected by the refinery engineers that the catalyst powder was being carried over to the fractionator, which could have led to erosion of the fractionator column internals resulting in their rupture, and consequentially, to the fire hazard. To understand the flow behaviour of the catalyst powder and to ensure the mechanical integrity, catalyst accumulation and choking, both radiotracer study and gamma scanning of the CCU reactor was carried out. The reactor consists of a riser, three primary cyclones and three secondary cyclones. Gamma scanning of the reactor was carried out with the help of an automatic gamma scanner using 1.8 GBq of Co-60 sealed source. Results showed that the catalyst powder was accumulated in one of the secondary cyclones and uneven density distribution was observed in another secondary cyclone. The radiotracer study was carried out using the irradiated catalyst powder as a radiotracer, which contains 0.9 GBq of Na-24. The radiotracer was injected in the reactor through the specially fabricated injection system. Radiation measurement was done using the thermally insulated and collimated NaI(Tl) scintillation detectors located at various strategic locations coupled to a multi-detector data acquisition system. The data were mathematically analysed. It was confirmed that the catalyst powder was accumulated in one of the secondary cyclones with no flow downwards. This resulted in excess powder available to travel along with hydrocarbon towards fractionator. Since the quantity of powder released through the hydrocarbon outlet of CCU was higher than the designed value, the catalyst powder was observed in various zones of the fractionator. Mathematical modelling of the radiotracer data obtained at various locations corroborated the scanning results; also, the flow pattern was obtained. Partially blocked secondary cyclone showed plug flow with recirculation; normal working cyclone had plug flow behaviour and the vortex breaker showed parallel flow.


Author(s):  
Oscar Martinez ◽  
Christopher Blessinger

In the United States of America all transportation of radioactive material is regulated by the Department of Transportation (DOT), along with input from the Nuclear Regulatory Commission. Beginning in 2008 a new type of sealed-source encapsulation package was developed at Oak Ridge National Laboratory (ORNL); these packages contain radioactive material and are regulated and transported in accordance with the requirements set for DOT Class 7 hazardous material. DOT provides regulations pertaining to specific package contents categorized as special form designs. The special form designation indicates that the encapsulated radioactive contents have a very low probability of dispersion even when subjected to significant structural conditions. All ORNL DOT designs have been certified by DOT as being special form materials. The special form designs have been shown to simplify the delivery, transport, acceptance, and receipt process. Simplification of the transportation process makes the sealed-source encapsulation designs very advantageous for shipment to various facilities throughout the lifetime of the special form material. To this end, DOT Certificates of Competent Authority (CoCAs) have been sought for the design suitable for containing high-alpha-activity actinide materials. This design consists of a core of porous zirconia matrix pre-encapsulated within triangular canister (ZipCan) tiles that are then enclosed by a spherical shell. This new ZipCan design and a similar rectangular ZipCube design were tested for compliance with the regulations found in Title 49, Code of Federal Regulations, Section 173.469, Tests for Special Form Class 7 (Radioactive) (49 CFR 173.469) materials. The spherical enclosure was subjected to 9 m impact, 1 m percussion, and 10-minute thermal tests. Before and after each test the designs were subjected to a helium leak check and a bubble test. The ZipCan tiles and core were subjected to the tests required for ISO 2919:1999(E), including a Class 4 impact test and heat test, and were subsequently subjected to helium leakage rate tests [49 CFR 173.469(a)(4)(i)]. The impact tile test unit contained a nonradioactive surrogate; however, the thermal test unit contained a radioactive source. All three designs are still undergoing regulatory special form testing, and all three sealed-source encapsulation designs are to be submitted to DOT for CoCAs.


Sign in / Sign up

Export Citation Format

Share Document