Production and stability of radiation-induced defects in MgAl2O4 under electronic excitation

Author(s):  
K. Yasuda ◽  
T. Yamamoto ◽  
S. Seki ◽  
K. Shiiyama ◽  
S. Matsumura
Author(s):  
H. Watanabe ◽  
B. Kabius ◽  
B. Roas ◽  
K. Urban

Recently it was reported that the critical current density(Jc) of YBa2Cu2O7, in the presence of magnetic field, is enhanced by ion irradiation. The enhancement is thought to be due to the pinning of the magnetic flux lines by radiation-induced defects or by structural disorder. The aim of the present study was to understand the fundamental mechanisms of the defect formation in association with the pinning effect in YBa2Cu3O7 by means of high-resolution electron microscopy(HRTEM).The YBa2Cu3O7 specimens were prepared by laser ablation in an insitu process. During deposition, a substrate temperature and oxygen atmosphere were kept at about 1073 K and 0.4 mbar, respectively. In this way high quality epitaxially films can be obtained with the caxis parallel to the <100 > SrTiO3 substrate normal. The specimens were irradiated at a temperature of 77 K with 173 MeV Xe ions up to a dose of 3.0 × 1016 m−2.


1986 ◽  
Vol 47 (C8) ◽  
pp. C8-1045-C8-1048
Author(s):  
T. BOLZE ◽  
J. PEISL

1989 ◽  
Vol 32 (3) ◽  
pp. 198-203
Author(s):  
A. N. Georgobiani ◽  
M. B. Kotlyarevskii ◽  
B. P. Dement'ev ◽  
V. N. Mikhalenko ◽  
N. V. Serdyuk ◽  
...  

1994 ◽  
Vol 33 (Part 2, No. 2B) ◽  
pp. L233-L234 ◽  
Author(s):  
Yoshinori Hayashi ◽  
Yuki Okuda ◽  
Hisamitsu Mitera ◽  
Keizo Kato

1969 ◽  
Vol 30 (4) ◽  
pp. 253-254 ◽  
Author(s):  
I.R. Nair ◽  
C.E. Hathaway

1964 ◽  
Vol 35 (5) ◽  
pp. 1639-1640 ◽  
Author(s):  
Thomas M. Fitzgerald ◽  
Bruce B. Chick ◽  
Rohn Truell

MRS Advances ◽  
2016 ◽  
Vol 1 (42) ◽  
pp. 2887-2892
Author(s):  
Brittany Muntifering ◽  
Jianmin Qu ◽  
Khalid Hattar

ABSTRACTThe formation and stability of radiation-induced defects in structural materials in reactor environments significantly effects their integrity and performance. Hydrogen, which may be present in significant quantities in future reactors, may play an important role in defect evolution. To characterize the effect of hydrogen on cascade damage evolution, in-situ TEM self-ion irradiation and deuterium implantation was performed, both sequentially and concurrently, on nickel. This paper presents preliminary results characterizing dislocation loop formation and evolution during room temperature deuterium implantation and self-ion irradiation and the consequence of the sequence of irradiation. Hydrogen isotope implantation at room temperature appears to have little or no effect on the final dislocation loop structures that result from self-ion irradiation, regardless of the sequence of irradiation. Tilting experiments emphasize the importance of precise two-beam conditions for characterizing defect size and structure.


Sign in / Sign up

Export Citation Format

Share Document