recombination luminescence
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 9)

H-INDEX

27
(FIVE YEARS 1)

2020 ◽  
Vol 223 ◽  
pp. 117216
Author(s):  
Andris Antuzevics ◽  
Andris Fedotovs ◽  
Dzintars Berzins ◽  
Uldis Rogulis ◽  
Krisjanis Auzins ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 909 ◽  
Author(s):  
Tamara Kondratenko ◽  
Oleg Ovchinnikov ◽  
Irina Grevtseva ◽  
Mikhail Smirnov ◽  
Oksana Erina ◽  
...  

The mechanism features of colloidal quantum dots (QDs) passivation with thioglycolic acid molecules (TGA) for cases of different luminescent properties is considered using FTIR. This problem is considered based on FTIR spectra analysis for various ionic forms of TGA. Experimental TGA molecules FTIR spectra is interpreted, basing on the data on modeling of TGA vibrational modes, realized in the framework of density functional method (DFT /B3LYP/6-31+G(d)) taking into account the vibrations anharmonicity of every functional group. This approach provides a significant improvement in the agreement between the experimental and calculated data. FTIR spectra of Ag 2 S/TGA QDs with exciton and recombination luminescence are differ from each other and B “freeB” TGA molecules. The ν ( S − H ) TGA peak (2559 cm − 1 ) disappears in FTIR spectra of Ag 2 S/TGA QD samples. This fact indicates the interactions between TGA thiol group and dangling bonds of Ag 2 S nanocrystals. Ag 2 S QDs passivation with TGA molecules leads to emergence ν a s (COO − ) (1584 cm − 1 ) and ν s (COO − ) (1387 cm − 1 ) peaks. It indicates TGA adsorption in ionic form. For Ag 2 S/TGA QDs with exciton luminescence we observed (a) significant low-frequency shift of ν s (COO − ) peak from 1388 cm − 1 to 1359 cm − 1 and high-frequency shift of ν a s (COO − ) peak from 1567 cm − 1 to 1581 cm − 1 ; (b) change in the ratio of intensities of ν a s (COO − ) and ν s (COO − ) vibrations. This feature is caused by the change in the symmetry of TGA molecules due to passivation of Ag 2 S quantum dots.For Ag 2 S/TGA QDs with recombination luminescence, the insignificant high-frequency shift of 7–10 cm − 1 for ν a s (COO − ) at 1567 cm − 1 and low-frequency shift of 3–5 cm − 1 for ν s (COO − ) at 1388 cm − 1 , probably caused by the interaction of thiol with Ag 2 S surface is observed. Using FTIR spectra, it was found that IR luminescence photodegradation is also accompanied by changes in the thioglycolic acid molecules, which capped Ag 2 S QDs. In the case of Ag 2 S QDs with exciton luminescence, the degradation process is non-reversible. It is accompanied by TGA photodegradation with the formation of α -thiol-substituted acyl radical (S-CH 2 -CO • ) TGA.


2020 ◽  
Vol 128 (5) ◽  
pp. 651
Author(s):  
В.П. Смагин ◽  
А.А. Исаева ◽  
Н.С. Еремина

Zinc sulfide is one of the most popular luminescent semiconductors of group A(II)B(VI). Doping ZnS quantum dots with Ln3+ ions makes it possible to form nanoscale structures in a semiconductor matrix containing isolated centers of narrow-band luminescence. The introduction of quantum dots into the acrylate matrix further stabilizes the particles and allows them to form their morphology. Nanoscale structures of Zn1-x-yCuxEuyS/EuL3, where L − trifluoroacetate are anions, were synthesized by the method of emerging reagents in situ in the medium of methyl methacrylate (MMA). ZnS doping was performed by simultaneous introduction of soluble precursors of zinc sulfide, as well as copper and europium trifluoroacetates into the acrylate reaction mixture. Polymer optically transparent compositions of PMMA/Zn1-x-yCuxEuyS/EuL3 were obtained by radical polymerization of MMA in the block. The excitation of luminescence of compositions is associated with Interzone electron transitions in ZnS, with a system of levels that form alloying ions in the forbidden zone of ZnS, as well as with their own energy absorption by Eu3+ ions. Broadband luminescence of compositions is caused by intracrystalline defects formed in ZnS during doping. Narrow-band luminescence occurs as a result OF 5D0→7Fj electronic transitions in Eu3+ ions associated with quantum dots, as well as being in the polymer matrix independently of them. The transfer of energy from the donor levels of the semiconductor matrix to the levels of Eu3+ ions, followed by its release in the form of luminescence, was confirmed by the imposition of absorption bands doped with ZnS and excitation bands of luminescence compositions, as well as an increase in the intensity of narrow-band luminescence of Eu3+ ions while reducing the intensity of a wide band of recombination luminescence of doped ZnS. A decrease in the intensity of the ZnS recombination luminescence band with an increase in the concentration of Eu3+ >1.0∙10-3 mol/L ions is also associated with the formation of a layer of complex europium compounds on the particle surface that prevent the passage of exciting radiation to the particle core.


Background: Elaboration of new luminescent nanomaterials for imaging of biological materials including cells of living organisms and their parts is highly actual. These materials must meet a number of requirements such as low toxicity, inherence of intensive luminescence, low costs of raw material and symple synthesis methods. AlN nanopowder is one of such prospective materials fitting the above requirements. Our long time investigations on spectral characteristics for III group element nitrides allows chose of doped AlN nanopowder as prospective candidate for developing of luminescent markers for imaging of biological materials. Objectives: The aim of the present study is spectral characterization of AlN nanopowder doped with Mn and evaluation of its use as luminescent marker for biological materials. Materials and methods: AlN nanopowder with average size of polycrystalline grains of 60 nm and the same doped with Mn were sythesized in Institue of Inorganic Chemistry, Riga Technical University. Photoluminescence and its excitation spectra of the materials were studied at room temperature using a self-made set-up. Results: It was found that in undoped AlN nanopowder at room temperature luminescence of native defects forms a wide and complex band peaking at 415 nm. This blue luminescence can be excited with ultraviolet light from two spectral regions around 315–340 nm and 260 nm. Two luminescence mechanisms are proposed dependent on the spectral region of exciting light. The first of them results in the intra-center luminescence, but the second one is recombination luminescence. Incorporation of Mn atoms in the crystalline lattice of AlN nanopowder forming AlN:Mn NP results in appearance of intensive red luminescence at 600 nm, which can be excited with light from two excitation bands at 260 and 480 nm. Two mechanisms responsible for an appearence of the red luminescence of Mn are proposed. They are the intra-center luminescence and recombination luminescence mechanisms. In this case the red Mn luminiscence prevails and the blue luminescence characterizing the host material has not been observed. Conclusion: AlN nanopowder doped with Mn atoms is a prospective material for use as luminescent marker for imaging of biological materials. Properties of this material are in a good agreement with the main requirements obligated to biological materials: i) AlN NP has low toxicity; ii) AlN:Mn NP possesses intensive red luminescence at 600 nm, which can be excited either with the ultraviolet light around 260 nm or with visible light around 480 nm; iii) it is relatively cheep material and it can be synthesized using simple synthesis methods.


2019 ◽  
Vol 125 ◽  
pp. 19-24 ◽  
Author(s):  
Zh.M. Salikhodzha ◽  
T.N. Nurakhmetov ◽  
A.T. Akilbekov ◽  
A.M. Zhunusbekov ◽  
A. Zh. Kainarbay ◽  
...  

2019 ◽  
Vol 126 (1) ◽  
pp. 69
Author(s):  
М.С. Смирнов ◽  
О.В. Овчинников ◽  
А.С. Перепелица

AbstractWe have considered the resonant nonradiative energy transfer in hybrid associates of thionine dye (TH^+) molecules and Ag_2S colloidal quantum dots (QDs) passivated with thioglycolic acid (Ag_2S/TGA) and Ag_2S QDs stabilized with gelatin (Ag_2S/Gel). Used samples of Ag_2S QDs possess luminescence, which arises by the exciton mechanism, as well as by the recombination mechanisms of holes with electrons localized at luminescence centers and of electrons with holes localized at the luminescence centers. The quenching of luminescence of Ag_2S/TGA QDs (1.8 nm) with a maximum at 630 nm and a decrease in the luminescence lifetime from 13.7 to 6.5 ns, which occurs upon association with TH^+ molecules, have been established. On the contrary, for associates of Ag_2S/TGA QDs (5.5 nm) with TH^+ molecules, we have observed the quenching of luminescence of the dye and a decrease in the lifetime of this luminescence from 0.43 to 0.3 ns, as well as an enhancement of luminescence of QDs. In the case of hybrid association with TH^+ molecules, the luminescence enhancement of Ag_2S/Gel QDs (1.6 nm) has been established, which results from the recombination of free holes with electrons localized at luminescence centers. Based on our analysis of the luminescence kinetics of the dye, we have inferred the occurrence of resonant nonradiative energy transfer from TH^+ molecules to centers of recombination luminescence in Ag_2S/TGA (5.5 nm) and in Ag_2S/Gel (1.6 nm) QDs with its maxima at 950 and 1205 nm, respectively. For Ag_2S/TGA QDs (2.2 nm), which luminesce with a maximum at 620 nm by the exciton mechanism, we have observed a significant overlap both between the luminescence spectra of QDs and TH^+ and between their absorption spectra. Close parameters of the luminescence kinetics for both the initial components and their associates indicate the energy transfer, which is realized in opposite directions.


2019 ◽  
Vol 71 (4) ◽  
pp. 75-81
Author(s):  
L. Myasnikova ◽  
◽  
K. Shunkeyev ◽  
Zh. Ubayev ◽  
Sh. Sagimbaeva ◽  
...  

2018 ◽  
Vol 133 (4) ◽  
pp. 806-810 ◽  
Author(s):  
S.S. Novosad ◽  
I.S. Novosad ◽  
O.M. Bordun ◽  
L.V. Kostyk ◽  
I.O. Bordun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document