Mechanical wounding promotes local and long distance response in the halophyte Cakile maritima through the involvement of the ROS and RNS metabolism

Nitric Oxide ◽  
2018 ◽  
Vol 74 ◽  
pp. 93-101 ◽  
Author(s):  
Hayet Houmani ◽  
Marta Rodríguez-Ruiz ◽  
José M. Palma ◽  
Francisco J. Corpas
2022 ◽  
Author(s):  
Ronald Myers ◽  
Yosef Fichman ◽  
Gary Stacey ◽  
Ron Mittler

Mechanical wounding occurs in plants during biotic (e.g., herbivore or pathogen attack) or abiotic (e.g., wind damage or freezing) stresses and is associated with the activation of multiple signaling pathways. These initiate many wound responses at the wounded tissues, as well as trigger long-distance signaling pathways that activate wound responses in tissues that were not affected by the initial wounding event (termed systemic wound response). Among the different systemic signals activated by wounding are electric signals, calcium and reactive oxygen species (ROS) waves, and different plant hormones such as jasmonic acid. The release of glutamate from cells at the wounded tissues was recently proposed to trigger several different systemic signal transduction pathways via glutamate-like receptors (GLRs). However, the role of another important compound released from cells during wounding (i.e., extracellular ATP; eATP) in triggering systemic responses is not clear. Here we show that eATP that accumulates in wounded leaves and is sensed by the purinoreceptor kinase P2K is required for the activation of the ROS wave during wounding. Application of eATP to unwounded leaves triggered the ROS wave, and the activation of the ROS wave by wounding or eATP application was suppressed in mutants deficient in P2K (i.e., p2k1-3, p2k2, and p2k1-3p2k2). In addition, the expression of several systemic wound response transcripts was suppressed in mutants deficient in P2K during wounding. Our findings reveal that in addition to sensing glutamate via GLRs, eATP sensed by P2Ks is playing a key role in the triggering of systemic wound responses in plants.


2008 ◽  
Vol 90 (2) ◽  
pp. 167-178 ◽  
Author(s):  
MHEMMED GANDOUR ◽  
KAMEL HESSINI ◽  
CHEDLY ABDELLY

SummaryThe nature and extent of long-distance seed dispersal are currently poorly understood, largely due to the inherent difficulty in detecting such a phenomenon. Genetic methods provide one of the few general approaches that offer the potential to accurately address this issue. Phenotypic and allozymic approaches were applied to characterize inter-population seed dispersal of the sea rocket (Cakile maritima, Brassicaceae), a glabrous and succulent annual herb. Genetic variation was assessed on 360 individuals sampled from nine populations. Genetic diversity across populations was high, 37% of which was represented by Qst and 16% by Fst. When genetic distances were used to construct the UPGMA dendrogram, populations were clustered into three groups at the 90% similarity level. The pattern of clustering can be explained by examining the direction of sea currents around Tunisian coasts. We have shown in this study that C. maritima seeds can survive up to 4 months immersion in sea water and up to 1 year of floating in sea water; therefore, seed dispersal between populations is possible both in terms of seed survival and current patterns.


2019 ◽  
Author(s):  
Adina Schulze ◽  
Marlene Zimmer ◽  
Stefan Mielke ◽  
Hagen Stellmach ◽  
Charles W. Melnyk ◽  
...  

ABSTRACTMulticellular organisms rely upon the movement of signaling molecules across cells, tissues and organs to communicate among distal sites. In plants, herbivorous insects, necrotrophic pathogens and mechanical wounding stimulate the activation of the jasmonate (JA) pathway, which in turn triggers the transcriptional changes necessary to protect plants against those challenges, often at the expense of growth. Although previous evidence indicated that JA species can translocate from damaged into distal sites, the identity of the mobile compound(s), the tissues through which they translocate and the consequences of their relocation remain unknown. Here, we demonstrated that endogenous JA species generated after shoot injury translocate to unharmed roots via the phloem vascular tissue in Arabidopsis thaliana. By wounding wild-type shoots of chimeric plants and by quantifying the relocating compounds from their JA-deficient roots, we uncovered that the JA-Ile precursor 12-oxo-phytodienoic acid (OPDA) is a mobile JA species. Our data also showed that OPDA is a primary mobile compound relocating to roots where, upon conversion to the bioactive hormone, it induces JA-mediated gene expression and root growth inhibition. Collectively, our findings reveal the existence of long-distance transport of endogenous OPDA which serves as a communication molecule to coordinate shoot-to-root responses, and highlight the importance of a controlled distribution of JA species among organs during plant stress acclimation.


Author(s):  
M. Anwar Maun

Dispersal is a term used for the dissemination of detached reproductive structures from parent plants to a new site. Disseminules include spores, seeds, fruits, whole inflorescences, whole plants, fragments of the parent plant, bulbs and bulbils. Fruit attributes related to a particular dispersal agent or dispersal syndromes are complex and have resulted from millions of years of evolution. In practice, dispersal is mainly local, although some species of sea coasts are well adapted for long-distance dispersal. Knowledge of the modes of plant dispersal is vital to the study of coastal dune ecology because of the clear correlation between diversity and dispersal mechanisms. From the evolutionary point of view, dispersal improves fitness of species: the progeny is able to colonize a new site and extend the range of the species. The fitness here will be defined as getting to a coastal site by using any vector for dispersal, colonization of the new site (germination, establishment and reproduction) and dispersal of the propagules of the immigrant from the new site. Dispersal confers many benefits to the populations of plant species. It reduces competition for limited space and resources in the parental location and the more widely dispersed the propagules, the greater are the chances for the offspring to colonize elsewhere. Dispersal increases the chances of survival and evolution of more fit strains of a species by occupying more diverse habitats than the parents, and speciation may eventually occur in response to new selective pressures. For species adapted to live along sea coasts, dispersal by sea is primarily directed for dissemination to another site by the sea coast. During dispersal several physiological changes may occur in the disseminules that facilitate colonization of the species at the new habitat. For example, Barbour (1972) reported that immersion of upper fruits of Cakile maritima in seawater stimulated their subsequent germination under controlled conditions. Seed coat dormancy may also be broken by abrasion of seeds in sand while being rolled along the sand surface. Considering the large number of species along coasts and on islands, only a very few species may be successfully disseminated in seawater.


Author(s):  
James Cronshaw

Long distance transport in plants takes place in phloem tissue which has characteristic cells, the sieve elements. At maturity these cells have sieve areas in their end walls with specialized perforations. They are associated with companion cells, parenchyma cells, and in some species, with transfer cells. The protoplast of the functioning sieve element contains a high concentration of sugar, and consequently a high hydrostatic pressure, which makes it extremely difficult to fix mature sieve elements for electron microscopical observation without the formation of surge artifacts. Despite many structural studies which have attempted to prevent surge artifacts, several features of mature sieve elements, such as the distribution of P-protein and the nature of the contents of the sieve area pores, remain controversial.


VASA ◽  
2012 ◽  
Vol 41 (4) ◽  
pp. 262-268 ◽  
Author(s):  
Schweizer ◽  
Hügli ◽  
Koella ◽  
Jeanneret

On the occasion of diagnosing a popliteal entrapment syndrome in a 59-year old man with no cardiovascular risk factors, who developed acute ischemic leg pain during long distance running, we give an overview on this entity with emphasis on patients’age. The different types of the popliteal artery compression syndrome are summarized. The diagnostic and therapeutic approaches are discussed. The most important clinical sign of a popliteal entrapment syndrome is the lack of atherosclerotic risk factors in patients with limited walking distance. Not only in young athletes but also in patients more than 50 years old the popliteal entrapment syndrome has to be taken into account.


2014 ◽  
Vol 4 (2) ◽  
pp. 106-112
Author(s):  
Anita Shrivastava ◽  
Andrea Burianova

This study aimed to explore the relationships between attachment styles, proximity, and relational satisfaction. This was achieved by assessing a distinct type of long distance romantic relationship of flying crews, compared with proximal (non-flying crew) romantic relationships. The responses of 139 expatriate professionals revealed significant associations between proximity and anxious and avoidant attachment dimensions. The role of the avoidant dimension in comparison with that of the anxious dimension was found to be a significant predictor of relational satisfaction. This study contributes significantly toward addressing the role of proximity and attachment in relational satisfaction in a new context of geographic separation.


Sign in / Sign up

Export Citation Format

Share Document