Effect of ginger, Paullinia cupana, muira puama and l - citrulline, singly or in combination, on modulation of the inducible nitric oxide- NO-cGMP pathway in rat penile smooth muscle cells

Nitric Oxide ◽  
2018 ◽  
Vol 76 ◽  
pp. 81-86 ◽  
Author(s):  
Monica G. Ferrini ◽  
Eduardo Garcia ◽  
Andrea Abraham ◽  
Jorge N. Artaza ◽  
Sabine Nguyen ◽  
...  
1995 ◽  
Vol 74 (03) ◽  
pp. 980-986 ◽  
Author(s):  
Valérie B Schini-Kerth ◽  
Beate Fißithaler ◽  
Thomas T Andersen ◽  
John W Fenton ◽  
Paul M Vanhoutte ◽  
...  

SummaryProteolytically active forms of thrombin (α- and γ-thrombin) and thrombin receptor peptides inhibited the release of nitrite, a stable endproduct of nitric oxide, evoked by interleukin-1 β(IL-1 β) in cultured vascular smooth muscle cells while proteolytically inactive forms [D-Phe-Pro-Arg chloromethyl ketone-α-thrombin (PPACK-α- thrombin) and diisopropylphosphoryl-α-thrombin (DIP-α-thrombin)] had either no or only minimal inhibitory effects. Under bioassay conditions, perfusates from columns containing IL-1 β-activated vascular smooth muscle cells or cells treated with IL-1βplus PPACK-α-thrombin relaxed detector blood vessels. These relaxations were abolished by the inhibitor of nitric oxide synthesis, NG-nitro-L arginine. No relaxations were obtained with untreated cells or IL-1 β-treated cells in the presence of α-thrombin. The expression of inducible nitric oxide synthase mRNA and protein in vascular smooth muscle cells by IL-1 β was impaired by α-thrombin. These results demonstrate that thrombin regulates the expression of the inducible nitric oxide synthase at a transcriptional level via the proteolytic activation of the thrombin receptor in vascular smooth muscle cells


2001 ◽  
Vol 91 (6) ◽  
pp. 2553-2560 ◽  
Author(s):  
Andreas Papapetropoulos ◽  
Stavroula Andreopoulos ◽  
Carolyn Y. Go ◽  
Azizul Hoque ◽  
Leslie C. Fuchs ◽  
...  

Most of the available data on the nitric oxide (NO) pathway in the vasculature is derived from studies performed with cells isolated from conduit arteries. We investigated the expression and regulation of components of the NO synthase (NOS)-NO-cGMP pathway in endothelial cells from the mesenteric vascular bed. Basally, or in response to bradykinin, cultured mesenteric endothelial cells (MEC) do not release NO and do not express endothelial NOS protein. MEC treated with cytokines, but not untreated cells, express inducible NOS (iNOS) mRNA and protein, increase nitrite release, and stimulate cGMP accumulation in reporter smooth muscle cells. Pretreatment of MEC with genistein abolished the cytokine-induced iNOS expression. On the other hand, exposure of MEC to the microtubule depolymerizing agent colchicine did not affect the cytokine-induced increase in nitrite formation and iNOS protein expression, whereas it inhibited the induction of iNOS in smooth muscle cells. Collectively, our findings demonstrate that MEC do not express endothelial NOS but respond to inflammatory stimuli by expressing iNOS, a process that is blocked by tyrosine kinase inhibition but not by microtubule depolymerization.


Sign in / Sign up

Export Citation Format

Share Document