Poloxamer 188 failed to prevent exercise-induced membrane breakdown in mdx skeletal muscle fibers

2006 ◽  
Vol 16 (12) ◽  
pp. 855-864 ◽  
Author(s):  
John G. Quinlan ◽  
Brenda L. Wong ◽  
Richard T. Niemeier ◽  
Alexandra S. McCullough ◽  
Linda Levin ◽  
...  
2017 ◽  
Vol 312 (1) ◽  
pp. C16-C28 ◽  
Author(s):  
D. Randazzo ◽  
B. Blaauw ◽  
C. Paolini ◽  
E. Pierantozzi ◽  
S. Spinozzi ◽  
...  

We recently reported that skeletal muscle fibers of obscurin knockout (KO) mice present altered distribution of ankyrin B (ankB), disorganization of the subsarcolemmal microtubules, and reduced localization of dystrophin at costameres. In addition, these mice have impaired running endurance and increased exercise-induced sarcolemmal damage compared with wild-type animals. Here, we report results from a combined approach of physiological, morphological, and structural studies in which we further characterize the skeletal muscles of obscurin KO mice. A detailed examination of exercise performance, using different running protocols, revealed that the reduced endurance of obscurin KO animals on the treadmill depends on exercise intensity and age. Indeed, a mild running protocol did not evidence significant differences between control and obscurin KO mice, whereas comparison of running abilities of 2-, 6-, and 11-mo-old mice exercised at exhaustion revealed a progressive age-dependent reduction of the exercise tolerance in KO mice. Histological analysis indicated that heavy exercise induced leukocyte infiltration, fibrotic connective tissue deposition, and hypercontractures in the diaphragm of KO mice. On the same line, electron microscopy revealed that, in the diaphragm of exercised obscurin KO mice, but not in the hindlimb muscles, both M-line and H-zone of sarcomeres appeared wavy and less defined. Altogether, these results suggest that obscurin is required for the maintenance of morphological and ultrastructural integrity of skeletal muscle fibers against damage induced by intense mechanical stress and point to the diaphragm as the skeletal muscle most severely affected in obscurin-deficient mice.


2017 ◽  
Vol 123 (2) ◽  
pp. 460-472 ◽  
Author(s):  
Scott K. Powers

Endurance exercise training promotes numerous cellular adaptations in both cardiac myocytes and skeletal muscle fibers. For example, exercise training fosters changes in mitochondrial function due to increased mitochondrial protein expression and accelerated mitochondrial turnover. Additionally, endurance exercise training alters the abundance of numerous cytosolic and mitochondrial proteins in both cardiac and skeletal muscle myocytes, resulting in a protective phenotype in the active fibers; this exercise-induced protection of cardiac and skeletal muscle fibers is often referred to as “exercise preconditioning.” As few as 3–5 consecutive days of endurance exercise training result in a preconditioned cardiac phenotype that is sheltered against ischemia-reperfusion-induced injury. Similarly, endurance exercise training results in preconditioned skeletal muscle fibers that are resistant to a variety of stresses (e.g., heat stress, exercise-induced oxidative stress, and inactivity-induced atrophy). Many studies have probed the mechanisms responsible for exercise-induced preconditioning of cardiac and skeletal muscle fibers; these studies are important, because they provide an improved understanding of the biochemical mechanisms responsible for exercise-induced preconditioning, which has the potential to lead to innovative pharmacological therapies aimed at minimizing stress-induced injury to cardiac and skeletal muscle. This review summarizes the development of exercise-induced protection of cardiac myocytes and skeletal muscle fibers and highlights the putative mechanisms responsible for exercise-induced protection in the heart and skeletal muscles.


2013 ◽  
Vol 104 (2) ◽  
pp. 290a
Author(s):  
Mariana Casas ◽  
Paola Llanos ◽  
Gonzalo Jorquera ◽  
Jorge Hidalgo ◽  
Sonja Buvinic ◽  
...  

2003 ◽  
Vol 56 (5) ◽  
pp. 297-305
Author(s):  
Hiroyuki Senge ◽  
Sakiya Yamasaki ◽  
Hiroshi Okamoto ◽  
Shigehiko Ogoh ◽  
Sadayoshi Taguchi

Author(s):  
I. Taylor ◽  
P. Ingram ◽  
J.R. Sommer

In studying quick-frozen single intact skeletal muscle fibers for structural and microchemical alterations that occur milliseconds, and fractions thereof, after electrical stimulation, we have developed a method to compare, directly, ice crystal formation in freeze-substituted thin sections adjacent to all, and beneath the last, freeze-dried cryosections. We have observed images in the cryosections that to our knowledge have not been published heretofore (Figs.1-4). The main features are that isolated, sometimes large regions of the sections appear hazy and have much less contrast than adjacent regions. Sometimes within the hazy regions there are smaller areas that appear crinkled and have much more contrast. We have also observed that while the hazy areas remain still, the regions of higher contrast visibly contract in the beam, often causing tears in the sections that are clearly not caused by ice crystals (Fig.3, arrows).


Author(s):  
Leonardo Hernández

The influence of Ca2+ and other divalent cations on contractile responses of slow skeletal muscle fibers of the frog (Rana pipiens) under conditions of chronic denervation was investigated.Isometric tension was recorded from slow bundles of normal and denervated cruralis muscle in normal solution and in solutions with free calcium concentration solution or in solutions where other divalent cations (Sr2+, Ni2+, Co2+ or Mn2+) substituted for calcium. In the second week after nerve section, in Ca2+-free solutions, we observed that contractures (evoked from 40 to 80 mM-K+) of non-denervated muscles showed significantly higher tensions (p<0.05), than those from denervated bundles. Likewise, in solutions where calcium was substituted by all divalent cations tested, with exception of Mn2+, the denervated bundles displayed lower tension than non-denervated, also in the second week of denervation. In this case, the Ca2+ substitution by Sr2+ caused the higher decrease in tension, followed by Co2+ and Ni2+, which were different to non-denervated bundles, as the lowest tension was developed by Mn2+, followed by Co2+, and then Ni2+ and Sr2+. After the third week, we observed a recovery in tension. These results suggest that denervation altering the binding capacity to divalent cations of the voltage sensor.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Kazuki Yamamoto ◽  
Nao Yamaoka ◽  
Yu Imaizumi ◽  
Takunori Nagashima ◽  
Taiki Furutani ◽  
...  

A three-dimensional human neuromuscular tissue model that mimics the physically separated structures of motor neurons and skeletal muscle fibers is presented.


Sign in / Sign up

Export Citation Format

Share Document