scholarly journals Usefulness of exome sequencing in the study of spastic paraparesis and cerebellar atrophy: de novo mutation of the KIF1A gene, a new hope in prognosis

2020 ◽  
Vol 35 (7) ◽  
pp. 535-538
Author(s):  
S. Urtiaga Valle ◽  
B. Fournier Gil ◽  
M.S. Ramiro León ◽  
B. Martínez Menéndez
Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2892-2892 ◽  
Author(s):  
Cecile Bally ◽  
Jacqueline Lehmann-Che ◽  
Bruno Cassinat ◽  
Lionel Ades ◽  
Eric Letouze ◽  
...  

Abstract Background : APL is, in the vast majority of cases, driven by t(15 ;17) translocation, which leads to PML/RARA rearrangement. Remarkably, APL is an uncommon genetically simple disease and only few additional alterations, cooperating with PML/RAR, have been described at diagnostic (Welch et al, Cell 2012). Most APL can be cured with targeted therapy combining all-trans retinoic acid (ATRA) and chemotherapy (CT). However, genetic mechanisms underlying the 10-15% relapses observed with this regimen remain unclear. The goal of the present study was to identify mutations that cooperate with PML/RAR and those responsible for acquired resistance to ATRA-CT treatment in APL patients by whole-exome sequencing of diagnostic/ remission/relapse trios. Methods: Newly diagnosed APL patients included in clinical trials of the French Swiss Belgian APL group between 1994 and 2008, treated with ATRA-CT, before the introduction of first-line ATO, who experienced at least one relapse and had adequate material, were studied. We collected retrospectively 64 samples from 23 patients, including 23 diagnostic samples, 18 at first complete remission (CR) and 23 at relapse (22 first relapse and 1 second relapse). Whole exome-sequencing was performed on all samples. DNA libraries were prepared with the SureSelect human v5 kit (Agilent) and sequenced on Hiseq1000 (Illumina). The bioinformatic analysis was performed by GECO/integragen using CASAVA variant calling (Illumina) and dedicated pipeline. 18 trios and 5 duos passed the stringent quality control and were analyzed for somatic variants and copy number variations (CNV). Results : After elimination of polymorphisms, the median number of somatic variants corresponding to de novo mutation at diagnosis was 14, while only 3 new somatic variants appeared at relapse (figure 1). Notably, we failed to detect oncogene alterations other than PML/RARA in 7/23 (30%) patients. At diagnostic, 39% of patients (9/23) presented the common FLT3 alterations and at relapse 22% (5/23) of patients presented the known RARA mutations. Moreover, recurrent alterations were observed in activators of the MAPK signaling (22%): NRAS (2 patients), BRAF (1 patient), KRAS (1 patient), SPRY1 (1 patient). Mutations in the NT5C2 gene (3 patients), coding a 5'nucleotidase implicated in resistance to nucleoside-analog therapy, were solely observed at relapse, as in acute lymphoblastic leukemia (ALL). Abnormalities of epigenetic regulators were also detected at diagnostic and/or relapse: WT1 (7 patients, 30%), NSD1 (2 patients), TET2 (1 patient), ASXL1 (1 patient) and MED12 (2 patients). Homozygote WT1 inactivation by mutation plus neutral copy LOH occurred in 3 patients at relapse. The genetic markers identified allowed us to construct several evolution models. In 8 patients (35%), the diagnostic and relapse clones were clearly distinct, supporting the fact that they independently derived from pre-leukemic cells that survived ATRA/chemotherapy. In contrast, other relapses appeared to derive from the diagnostic clone. Conclusion: Our data highlight the genetic simplicity of APL with very few alterations detected and 30% patients without identified mutations in addition to PML/RARa. Our results support the existence of two prototypic mechanisms of relapse: re-emergence of a new APL from persisting pre-leukemic cells and relapse from APLs often expressing strong oncogenes at diagnosis, impeding therapy response and favoring the acquisition of resistance mutations at relapse, including PML/RARA or NT5C2. It will be interesting to assess the prevalence of those two mechanisms in the exceptional cases of relapse in patients treated with more recent frontline regimens that combine ATRA and arsenic in APL. Disclosures Ades: Celgene, Takeda, Novartis, Astex: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Fenaux:Celgene, Janssen,Novartis, Astex, Teva: Honoraria, Research Funding.


2015 ◽  
Vol 60 (3) ◽  
pp. 165-165 ◽  
Author(s):  
Lei Feng ◽  
Daizhan Zhou ◽  
Zhou Zhang ◽  
Yun Liu ◽  
Yabo Yang

Neurology ◽  
2000 ◽  
Vol 55 (7) ◽  
pp. 1040-1042 ◽  
Author(s):  
K. Vahedi ◽  
C. Denier ◽  
A. Ducros ◽  
V. Bousson ◽  
C. Levy ◽  
...  

2015 ◽  
Vol 9 (1) ◽  
Author(s):  
Katre Maasalu ◽  
Tiit Nikopensius ◽  
Sulev Kõks ◽  
Margit Nõukas ◽  
Mart Kals ◽  
...  

2021 ◽  
Vol 19 (2) ◽  
pp. 223-228
Author(s):  
Ma Thi Huyen Thuong ◽  
Dang Tien Truong ◽  
Nguyen Hai Ha ◽  
Nguyen Dang Ton

Epidermolysis bullosa simplex (EBS) is a group of epidermolysis bullosa (EB) and accounts for 75-85% EB cases. Most EBS patients are caused by mutations in KRT5 or KRT14, encoding for keratin 5 and keratin 14, respectively, which impair the structural entirety of paired intermediate filaments expressed in the fracture of basal keratinocytes and subsequent blistering of the epithelium. This study aimed to identify the causative mutation in a Vietnamese EB case. Whole exome sequencing (WES) was performed in the affected individual and revealed a de novo heterozygous pathogenic mutation in exon 7 of KRT5 gene, resulting in an amino acid change at position 477, with glutamic acid to lysine substitution (p.E477K). The KRT5 p.E477K was strong associated with the very severe or lethal of generalized severe EBS (GS-EBS), characterized by the severe symptoms at birth, improving with age and evolution to palmoplantar keratoderma and nail dysplasia. Our finding will aid the molecular diagnosis, prognosis prediction of the patient with GS-EBS due to p.E477K and significant genetic counselling the family concerning the recurrence risk for future pregnancies.


2021 ◽  
Vol 15 ◽  
Author(s):  
Cinthia Aguilera ◽  
Stefan Hümmer ◽  
Marc Masanas ◽  
Elisabeth Gabau ◽  
Miriam Guitart ◽  
...  

KIF1A is a microtubule-dependent motor protein responsible for fast anterograde transport of synaptic vesicle precursors in neurons. Pathogenic variants in KIF1A have been associated with a wide spectrum of neurological disorders. Here, we report a patient presenting a severe neurodevelopmental disorder carrying a novel de novo missense variant p.Arg169Thr (R169T) in the KIF1A motor domain. The clinical features present in our patient match with those reported for NESCAV syndrome including severe developmental delay, spastic paraparesis, motor sensory neuropathy, bilateral optic nerve atrophy, progressive cerebellar atrophy, epilepsy, ataxia, and hypotonia. Here, we demonstrate that the microtubule-stimulated ATPase activity of the KIF1A is strongly reduced in the motor domain of the R169T variant. Supporting this, in silico structural modeling suggests that this variant impairs the interaction of the KIF1A motor domain with microtubules. The characterization of the molecular effect of the R169T variant on the KIF1A protein together with the presence of the typical clinical features indicates its causal pathogenic effect.


2014 ◽  
Vol 36 (1) ◽  
pp. 69-78 ◽  
Author(s):  
Jae-Ran Lee ◽  
Myriam Srour ◽  
Doyoun Kim ◽  
Fadi. F. Hamdan ◽  
So-Hee Lim ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Lv Liu ◽  
Chan Chen ◽  
YaLi Li ◽  
Rong Yu

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a rare and potentially life-threatening disorder of the heart. The clinical spectrum of ARVC includes myocyte loss and fibro-fatty tissue replacement. With the progress of ARVC, the patient can present serious ventricular arrhythmias, heart failure, and even sudden cardiac death. Previous studies have demonstrated that desmosomes and intermediate junctions play a crucial role in the generation and development of ARVC. In this study, we enrolled a Chinese patient with suspicious ARVC. The patient suffered from right ventricular enlargement and less thickening of right ventricular wall. ECG record showed an epsilon wave. However, there was no obvious symptom in his parents. After whole-exome sequencing and data filtering, we identified a de novo mutation (c.1729C>T/p.R577C) of junction plakoglobin (JUP) in this patient. Bioinformatics programs predicted that this mutation was deleterious. Western blot revealed that, compared to cells transfected with WT plasmids, the expressions of desmoglein 2 (DSG2) and Connexin 43 were decreased overtly in cells transfected with the mutant plasmid. Previous studies have proven that the reduction of DSG2 and Connexin 43 may disturb the stability of desmosomes. In this research, we reported a novel de novo mutation (c.1729C>T/p.R577C) of JUP in a Chinese patient with suspicious ARVC. Functional research further confirmed the pathogenicity of this novel mutation. Our study expanded the spectrum of JUP mutations and may contribute to the genetic diagnosis and counseling of patients with ARVC.


Sign in / Sign up

Export Citation Format

Share Document