mild developmental delay
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 19)

H-INDEX

9
(FIVE YEARS 0)

Author(s):  
Conor McClenaghan ◽  
Novella Rapini ◽  
Domenico Umberto De Rose ◽  
Jian Gao ◽  
Jacob Roeglin ◽  
...  

Background/Aims: Mutations in KCNJ11, the gene encoding the Kir6.2 subunit of pancreatic and neuronal KATP channels, are associated with a spectrum of neonatal diabetes diseases. Methods: Variant screening was used to identify cause of neonatal diabetes, and continuous glucose monitoring used to assess effectiveness of sulfonylurea treatment. Electrophysiological analysis of variant KATP channel function was used to determine molecular basis. Results: We identified a previously uncharacterized KCNJ11 mutation, c.988T>C [pTyr330His], in an Italian child diagnosed with sulfonylurea-resistant permanent neonatal diabetes and developmental delay (iDEND). Functional analysis of recombinant KATP channels reveals that this mutation causes a drastic gain-of-function, due to a reduction in ATP-inhibition. Further, we demonstrate that the Tyr330His substitution causes a significant decrease in sensitivity to the sulfonylurea, glibenclamide. Conclusions: In this subject, the KCNJ11(c.988T>C) mutation provoked neonatal diabetes, with mild developmental delay, which was insensitive to correction by sulfonylurea therapy. This is explained by the molecular loss of sulfonylurea sensitivity conferred by the Tyr330His substitution, and highlights the need for molecular analysis of such mutations.


2021 ◽  
Vol 14 ◽  
Author(s):  
Qi Tian ◽  
Li Shu ◽  
Pu Zhang ◽  
Ting Zeng ◽  
Yang Cao ◽  
...  

Background:MN1 C-terminal truncation (MCTT) syndrome is caused by variants in the C-terminal region of MN1, which were first described in 2020. The clinical features of MCTT syndrome includes severe neurodevelopmental and brain abnormalities. We reported on a patient who carried the MN1 variant in the C-terminal region with mild developmental delay and normal brain magnetic resonance image (MRI).Methods: Detailed clinical information was collected in the pedigree. Whole-exome sequencing (WES) accompanied with Sanger sequencing validation were performed. A functional study based on HEK239T cells was performed.Results: A de novo heterozygous c.3734delT: p.L1245fs variant was detected. HEK239T cells transinfected with the de novo variant showed decreased proliferation, enhanced apoptotic rate, and MN1 nuclear aggregation.Conclusion: Our study expended the clinical and genetic spectrum of MCTT which contributes to the genetic counseling of the MN1 gene.


2021 ◽  
Author(s):  
Hans-Jürgen Kreienkamp ◽  
Matias Wagner ◽  
Heike Weigand ◽  
Allyn McConkie-Rossell ◽  
Marie McDonald ◽  
...  

AbstractBain type of X-linked syndromic intellectual developmental disorder, caused by pathogenic missense variants in HRNRPH2, was initially described in six female individuals affected by moderate-to-severe neurodevelopmental delay. Although it was initially postulated that the condition would not be compatible with life in males, several affected male individuals harboring pathogenic variants in HNRNPH2 have since been documented. However, functional in-vitro analyses of identified variants have not been performed and, therefore, possible genotype–phenotype correlations remain elusive. Here, we present eight male individuals, including a pair of monozygotic twins, harboring pathogenic or likely pathogenic HNRNPH2 variants. Notably, we present the first individuals harboring nonsense or frameshift variants who, similarly to an individual harboring a de novo p.(Arg29Cys) variant within the first quasi-RNA-recognition motif (qRRM), displayed mild developmental delay, and developed mostly autistic features and/or psychiatric co-morbidities. Additionally, we present two individuals harboring a recurrent de novo p.(Arg114Trp), within the second qRRM, who had a severe neurodevelopmental delay with seizures. Functional characterization of the three most common HNRNPH2 missense variants revealed dysfunctional nucleocytoplasmic shuttling of proteins harboring the p.(Arg206Gln) and p.(Pro209Leu) variants, located within the nuclear localization signal, whereas proteins with p.(Arg114Trp) showed reduced interaction with members of the large assembly of splicing regulators (LASR). Moreover, RNA-sequencing of primary fibroblasts of the individual harboring the p.(Arg114Trp) revealed substantial alterations in the regulation of alternative splicing along with global transcriptome changes. Thus, we further expand the clinical and variant spectrum in HNRNPH2-associated disease in males and provide novel molecular insights suggesting the disorder to be a spliceopathy on the molecular level.


Author(s):  
Jyotindra Narayan Goswami ◽  
Shijith K.P ◽  
Ashish Kumar Simalti ◽  
Saroj Kumar Patnaik

AbstractA 3.5-year-old male child patient with mild developmental delay presented with history of acute onset fever, encephalopathy, and dyskinesia. The patient was investigated for common etiologies and was managed supportively. His neuroimaging was suggestive of vanishing white matter (VWM) disease which was confirmed by clinical exome sequencing. The child had an eventful hospital stay followed by near-total recovery after 4 weeks. The case attempts to sensitize readers about the current perspectives pertaining to VWM disease.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Bin Zhang ◽  
Michel Liu ◽  
Chin-To Fong ◽  
M. Anwar Iqbal

AbstractMEIS2 (Meis homeobox 2) encodes a homeobox protein in the three amino acid loop extension (TALE) family of highly conserved homeodomain-containing transcription regulators important for development. MEIS2 deletions/mutations have been associated with cleft lip/palate, dysmorphic facial features, cardiac defects, as well as intellectual disability at a variable severity. Here we report on one familial case that two affected siblings carry the same non-mosaic ~ 423 kb genomic deletion at 15q14 encompassing the entirety of CDIN1 and the last three exons (ex. 10, 11, 12) of the MEIS2 gene, while their unaffected father is mosaic for the same deletion in about 10% lymphocytes. Both siblings presented with mild developmental delay and bifid uvula, while no congenital cardiac abnormalities were identified. The elder sister also showed syncopal episodes and mild speech delay and the father had atrial septal defects. This is the first report showing multiple family members inherit a genomic deletion resulting in a MEIS2 partial truncation from a mosaic parent. Taken all together, this study has important implications for genetic counseling regarding recurrence risk and also points to the importance of offering MEIS2 gene tests covering both point mutations and microdeletions to individuals with milder bifid uvula and developmental delay.


Author(s):  
Xena Giada Pappalardo ◽  
Martino Ruggieri ◽  
Raffaele Falsaperla ◽  
Salvatore Savasta ◽  
Umberto Raucci ◽  
...  

AbstractThe 4q deletion syndrome is an uncommon condition manifesting with broad clinical expression and phenotypic variability. We report a 5-year-old boy affected by 4q deletion syndrome who showed minor craniofacial features, growth failure, mild developmental delay, severe speech delay, and marked irascibility and aggressivity. Moreover, he showed precocious and crowded primary dentition, digital hyperlaxity, and congenital bilateral adducted thumbs, signs which were previously unreported in the syndrome. The array comparative genomic hybridization analysis revealed a 4q partial terminal deletion of ∼329.6 kb extending from 164.703.186 to 165.032.803 nt, which includes part of MARCH1 (membrane associated ring-CH-type finger 1) gene (OMIM#613331). Same rearrangement was found in his healthy mother. Clinical phenotype of the child and its relationship to the deleted region is presented with a revision of the cases having the same copy number losses from the literature and genomic variant databases.


2021 ◽  
Vol 39 (3) ◽  
pp. 219-221
Author(s):  
June Woo Ahn ◽  
Su-Keong Hwang ◽  
Jae-Hyung Kim ◽  
Hoon Jung ◽  
Jin-Sung Park

Congenital myasthenic syndromes are a genetically and clinically heterogeneous group of neuromuscular disorders linked by abnormal signal transmission at the motor endplate caused by various genetic defects. Major clinical symptoms include weakness and fatigue during the first years of life but patients may also present with hypotonia, facial weakness, swallowing difficulties, respiratory dysfunction, ptosis and ophthalmoparesis. Here we report a 10-year-old boy who presented with mild developmental delay and bilateral ptosis caused by a frameshift mutation in the CHRNA1 gene that co-segregated within the family, and finally diagnosed as autosomal dominant congenital myasthenic syndrome.


2021 ◽  
Vol 9 ◽  
Author(s):  
Han-yu Luo ◽  
Ling-ling Xie ◽  
Si-qi Hong ◽  
Xiu-juan Li ◽  
Mei Li ◽  
...  

Objectives: To study the genetic and clinical characteristics of Chinese children with pathogenic proline-rich transmembrane protein 2 (PRRT2) gene-associated disorders.Methods: Targeted next generation sequencing (NGS) was used to identify pathogenic PRRT2 variations in Chinese children with epilepsy and/or kinesigenic dyskinesia. Patients with confirmed PRRT2-associated disorders were monitored and their clinical data were analyzed.Results: Forty-four patients with pathogenic PRRT2 variants were recruited. Thirty-five of them (79.5%) had heterozygous mutations, including 30 frameshifts, three missenses, one nonsense, and one splice site variant. The c.649dupC was the most common variant (56.8%). Eight patients (18.2%) showed whole gene deletions, and one patient (2.3%) had 16p11.2 microdeletion. Thirty-four cases (97.1%) were inherited and one case (2.9%) was de novo. Forty patients were diagnosed with benign familial infantile epilepsy (BFIE), two patients had paroxysmal kinesigenic dyskinesia (PKD) and two had infantile convulsions and choreoathetosis (ICCA). Patients with whole gene deletions had a later remission than patients with heterozygous mutations (13.9 vs. 7.1 months, P = 0.001). Forty-two patients were treated with antiseizure medications (ASMs). At last follow-up, 35 patients, including one who did not receive therapy, were asymptomatic, and one patient without ASMs died of status epilepticus at 12 months of age. One patient developed autism, and one patient showed mild developmental delay/intellectual disability.Conclusion: Our data suggested that patients with whole gene deletions could have more severe manifestations in PRRT2-associated disorders. Conventional ASMs, especially Oxcarbazepine, showed a good treatment response.


Author(s):  
Paolo Zanoni ◽  
Katharina Steindl ◽  
Deepanwita Sengupta ◽  
Pascal Joset ◽  
Angela Bahr ◽  
...  

Abstract Purpose Despite a few recent reports of patients harboring truncating variants in NSD2, a gene considered critical for the Wolf–Hirschhorn syndrome (WHS) phenotype, the clinical spectrum associated with NSD2 pathogenic variants remains poorly understood. Methods We collected a comprehensive series of 18 unpublished patients carrying heterozygous missense, elongating, or truncating NSD2 variants; compared their clinical data to the typical WHS phenotype after pooling them with ten previously described patients; and assessed the underlying molecular mechanism by structural modeling and measuring methylation activity in vitro. Results The core NSD2-associated phenotype includes mostly mild developmental delay, prenatal-onset growth retardation, low body mass index, and characteristic facial features distinct from WHS. Patients carrying missense variants were significantly taller and had more frequent behavioral/psychological issues compared with those harboring truncating variants. Structural in silico modeling suggested interference with NSD2’s folding and function for all missense variants in known structures. In vitro testing showed reduced methylation activity and failure to reconstitute H3K36me2 in NSD2 knockout cells for most missense variants. Conclusion NSD2 loss-of-function variants lead to a distinct, rather mild phenotype partially overlapping with WHS. To avoid confusion for patients, NSD2 deficiency may be named Rauch–Steindl syndrome after the delineators of this phenotype.


2021 ◽  
Vol 7 (20) ◽  
pp. eabf2066
Author(s):  
Dong Li ◽  
Qin Wang ◽  
Naihua N. Gong ◽  
Alina Kurolap ◽  
Hagit Baris Feldman ◽  
...  

Intellectual disability encompasses a wide spectrum of neurodevelopmental disorders, with many linked genetic loci. However, the underlying molecular mechanism for more than 50% of the patients remains elusive. We describe pathogenic variants in SMARCA5, encoding the ATPase motor of the ISWI chromatin remodeler, as a cause of a previously unidentified neurodevelopmental disorder, identifying 12 individuals with de novo or dominantly segregating rare heterozygous variants. Accompanying phenotypes include mild developmental delay, frequent postnatal short stature and microcephaly, and recurrent dysmorphic features. Loss of function of the SMARCA5 Drosophila ortholog Iswi led to smaller body size, reduced sensory dendrite complexity, and tiling defects in larvae. In adult flies, Iswi neural knockdown caused decreased brain size, aberrant mushroom body morphology, and abnormal locomotor function. Iswi loss of function was rescued by wild-type but not mutant SMARCA5. Our results demonstrate that SMARCA5 pathogenic variants cause a neurodevelopmental syndrome with mild facial dysmorphia.


Sign in / Sign up

Export Citation Format

Share Document