Plastic limit load analysis for steam generator tubes with local wall-thinning

2010 ◽  
Vol 240 (10) ◽  
pp. 2512-2520 ◽  
Author(s):  
Hu Hui ◽  
Peining Li
Author(s):  
Ouk Sub Lee ◽  
Hyun Su Kim ◽  
Jong Sung Kim ◽  
Tae Eun Jin ◽  
Hong Deok Kim ◽  
...  

2016 ◽  
Vol 725 ◽  
pp. 47-52
Author(s):  
Xian He Du ◽  
Ying Hua Liu

In order to evaluate the safety and integrity of piping with local wall-thinning at elevated temperature, a numerical method for plastic limit load of modified 9Cr-1Mo steel piping is proposed in the present paper. The limit load of piping at high temperature is defined as the load-carrying capacity after the structure has served for a certain time period. The power law creep behavior with Liu-Murakami damage model is implemented into the commercial software ABAQUS via CREEP for simulation, and the Ramberg-Osgood model is modified to consider the material deterioration effect of modified 9Cr-1Mo steel by introducing the creep damage factor into the elasto-plastic constitutive equation. For covering the wide ranges of defect ratios and service time periods, various 3-D numerical examples for the piping with local wall-thinning defects, and creep time are calculated and analyzed. The limit loads of the defected structures under high temperature are obtained through classic zero curvature criterion with the modified Ramberg-Osgood model, and the typical failure modes of these piping are also discussed. The results show that the plastic limit load of piping containing defect at elevated temperature depends not only on the size of defect, but also on the creep time, which is different from the traditional plastic limit analysis at room temperature without material deterioration.


2004 ◽  
Vol 270-273 ◽  
pp. 1240-1245 ◽  
Author(s):  
Hyun Su Kim ◽  
Jong Sung Kim ◽  
Tae Eun Jin ◽  
Hong Deok Kim ◽  
Han Sub Chung

2015 ◽  
Vol 97 (2) ◽  
pp. 163-174
Author(s):  
Anupam Prakash ◽  
Harit Kishorchandra Raval ◽  
Anish Gandhi ◽  
Dipak Bapu Pawar

2010 ◽  
Author(s):  
Lijie Chen ◽  
Yinghua Liu ◽  
Tieqiang Gang ◽  
Jane W. Z. Lu ◽  
Andrew Y. T. Leung ◽  
...  

2014 ◽  
Vol 626 ◽  
pp. 482-488
Author(s):  
Bing Ye Xu ◽  
Ying Hua Liu ◽  
Xian He Du ◽  
Gang Chen

Local wall-thinning, which can be found frequently on the surfaces of pipelines, may not only reduce the load-carrying capacities of pipelines, but also cause serious industrial accidents. In this paper, through a large number of computational examples, the effects of axial, circumferential, small area and large area local wall-thinning with different sizes on load-carrying capacities and failure modes of pipelines under both internal pressure and bending moment were investigated and evaluated. By data fitting, an engineering computational formula for plastic limit loads of pipelines with local wall-thinning was presented.


Author(s):  
Rahul Jain

This paper explores the use of limit load analysis methods for the design of a pressure vessel manway cover as per the ASME boiler and pressure vessel code guidelines. The results of elastic and limit load finite element analysis are discussed for the design. The concept of reference volume consideration along with linear elastic finite element analysis to determine the lower bound limit load has been explored and the results are compared with the non-linear elastic-plastic limit load analysis.


Author(s):  
TaeRyong Kim ◽  
ChangKyun Oh

Since pipe bend has a characteristic that extrados becomes thinner and intrados thicker after fabrication process, it can be expected to be vulnerable to extrados wall thinning due to corrosion or erosion during its operation. In this paper, limit loads of pipe bend with the thinning are computed under the loading conditions of internal pressure and bending moment. Several case studies with varying geometries and wall thinning shapes are presented. The difference in the limit loads behavior between pipe bend and welded elbow is also reviewed. The calculated plastic limit loads of pipe bend are compared with other research results for the welded elbow. The results show that pipe bend can be applied to safety-related piping systems as far as the internal pressure and bending moment only are considered.


Sign in / Sign up

Export Citation Format

Share Document