Limit Load Analysis of Pipe Bend With Extrados Wall Thinning

Author(s):  
TaeRyong Kim ◽  
ChangKyun Oh

Since pipe bend has a characteristic that extrados becomes thinner and intrados thicker after fabrication process, it can be expected to be vulnerable to extrados wall thinning due to corrosion or erosion during its operation. In this paper, limit loads of pipe bend with the thinning are computed under the loading conditions of internal pressure and bending moment. Several case studies with varying geometries and wall thinning shapes are presented. The difference in the limit loads behavior between pipe bend and welded elbow is also reviewed. The calculated plastic limit loads of pipe bend are compared with other research results for the welded elbow. The results show that pipe bend can be applied to safety-related piping systems as far as the internal pressure and bending moment only are considered.

2008 ◽  
Vol 385-387 ◽  
pp. 833-836
Author(s):  
Sang Min Lee ◽  
Young Hwan Choi ◽  
Hae Dong Chung ◽  
Yoon Suk Chang ◽  
Young Jin Kim

A piping system including straight pipes, elbows and tee branches in a nuclear power plant is mostly subjected to severe loading conditions with high temperature and pressure. In particular, the wall-thinning of an elbow due to flow accelerated corrosion is one of safety issues in the nuclear industry. In this respect, it is necessary to investigate the limit loads of an elbow with a wall-thinned part for evaluating integrity. In this paper, three dimensional plastic limit analyses are performed to obtain limit loads of an elbow with different bend angles as well as defect geometries under internal pressure and in-plane/out-of-plane bending moment. The limit loads are also compared with the results from limit load solutions of an uninjured elbow based on the von Mises yield criteria. Finally, the effects of significant factors, bend angle and defect shape, are quantified to estimate the exact load carrying capacity of an elbow during operation.


Author(s):  
Sherif S. Sorour ◽  
Mostafa Shazly ◽  
Mohammad M. Megahed

Pipe bends are critical components in piping systems where their failure modes are quite different from straight pipes. The objective of the present work is to investigate the limit loads of pipe bends with actual As-fabricated shape obtained from pipe bending process as compared to bends with Ideal and Assumed imperfect shapes. The present work is conducted by using nonlinear finite element analysis and is performed in two steps. The first step is achieved by simulating rotary pipe bending process with ball mandrel to obtain the actual as-fabricated shape of the 90° pipe bend. The process simulation was verified against published experimental data. In the second step, the pipe bend is subjected to different combinations of simultaneous loads consisting of internal pressure and In-plane closing bending moment. Results are provided for limit load curves for pipe bends with as-fabricated geometries and bends with ideal shape and assumed geometrical imperfections.


Author(s):  
Shunjie Li ◽  
Changyu Zhou ◽  
Jian Li ◽  
Xinting Miao

The effect of bend angle on plastic limit loads of pipe bends (elbows) under in-plane opening and closing bending moment is presented using three-dimensional large strain nonlinear finite element analyses. The results show that the presence of ovality significantly leads to the stress concentration in the middle cross section, which is the critical section of pipe bends. Meanwhile the state of stress concentration is also associated with the loading modes including the in-plane opening bending moment and the closing bending moment. Then plastic limit loads of pipe bends are further studied. It is found that plastic limit loads are decreasing with the increase of bend angles. Especially the variation of plastic limit loads of small angle pipe bends (bend angle from the 0 degree to 90 degree) is larger than that of large angle pipe bends (bend angle greater than 90 degree). Based on the finite element results, the present plastic limit load solutions are not fit for the large angle pipe bends (bend angle greater than 90 degree).


Author(s):  
Tarek M. A. A. EL-Bagory ◽  
Maher Y. A. Younan ◽  
Hossam E. M. Sallam ◽  
Lotfi A. Abdel-Latif

The main purpose of the present paper is to investigate the effect of crack depth on the limit load of miter pipe bends (MPB) under in-plane bending moment. The experimental work is conducted to investigate multi miter pipe bends, with a bend angle 90°, pipe bend factor h = 0.844, standard dimension ratio SDR = 11, and three junctions under a crosshead speed 500 mm/min. The material of the investigated pipe is a high-density polyethylene (HDPE), which is used in natural gas piping systems. The welds in the miter pipe bends are produced by butt-fusion method. The crack depth varies from intrados to extrados location according to the in-plane opening/closing bending moment respectively. For each in-plane bending moment the limit load is obtained by the tangent intersection (TI) method from the load deflection curves produced by the testing machine specially designed and constructed in the laboratory. The study reveals that increasing the crack depth leads to a decrease in the stiffness and limit load of (MPB) for both inplane closing and opening bending moment. Higher values of the limit load are reached in case of opening bending moment. This behavior is true for all investigated crack depths.


Author(s):  
Min Xu ◽  
Yujie Zhao ◽  
Binbin Zhou ◽  
Xiaohua He ◽  
Changyu Zhou

Abstract Based on the Hill yield criterion, the analytical solutions of the limit load of orthotropic thick-walled pipes under pure internal pressure, bending moment and torsion are given respectively. The simplified Mises analytical solution and finite element results of limit load for isotropic thick-walled pipe are obtained. The solution verifies the reliability of the analytical solution. The paper discusses the difference of limit load of isotropic and orthotropic pipes under the conditions of pure internal pressure, pure bending moment and pure torsion moment. It is concluded that the influence of material anisotropy on the limit load is significant. The limit load of pipe under pure internal pressure is mainly determined by circumferential yield strength, pure bending is only related to axial yield strength and pure torsion moment is related to the yield strength in the 45° direction and radial yield strength.


2015 ◽  
Vol 750 ◽  
pp. 198-205
Author(s):  
Peng Cui ◽  
Chang Yu Zhou

The local wall thinning(LWT) is a kind of common volume defect in pressure pipe. The limit loads of elbows with LWT under pressure, bending moment, torque and their combined loads have been studied in detail by orthogonal experimental design and finite element method. The results have shown that the influence of depth and circumferential length of LWT on the limit load is more obvious compared to that of axial length when an elbow is under pressure, bending moment or torque. The change of limit bending moment and torque with the depth of LWT and circumferential length is significant for an elbow under combined bending moment and torque. At last, the safety assessment equations for elbow under combined in-plane closing bending moment and torque were proposed by regression analysis.


Sign in / Sign up

Export Citation Format

Share Document