Influence of Soret and Dufour on MHD buoyancy-driven heat and mass transfer over a stretching sheet in porous media with temperature-dependent viscosity

2013 ◽  
Vol 256 ◽  
pp. 350-357 ◽  
Author(s):  
Dulal Pal ◽  
Hiranmoy Mondal
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
A. M. Salem

A numerical model is developed to study the effects of temperature-dependent viscosity on heat and mass transfer flow of magnetohydrodynamic(MHD) micropolar fluids with medium molecular weight along a permeable stretching surface embedded in a non-Darcian porous medium in the presence of viscous dissipation and chemical reaction. The governing boundary equations for momentum, angular momentum (microrotation), and energy and mass transfer are transformed to a set of nonlinear ordinary differential equations by using similarity solutions which are then solved numerically by shooting technique. A comparison between the analytical and the numerical solutions has been included. The effects of the various physical parameters entering into the problem on velocity, microrotation, temperature and concentration profiles are presented graphically. Finally, the effects of pertinent parameters on local skin-friction coefficient, local Nusselt number and local Sherwood number are also presented graphically. One important observation is that for some kinds of mixtures (e.g., H2, air) with light and medium molecular weight, the magnetic field and temperature-dependent viscosity effects play a significant role and should be taken into consideration as well.


2010 ◽  
Vol 15 (3) ◽  
pp. 257-270 ◽  
Author(s):  
M. M. M. Abdou

A numerical model is developed to study the effect of thermal radiation on unsteady boundary layer flow with temperature dependent viscosity and thermal conductivity due to a stretching sheet in porous media. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. The governing equations reduced to similarity boundary layer equations using suitable transformations and then solved using the Runge–Kutta numerical integration, procedure in conjunction with shooting technique. A parametric study illustrating the influence of the radiation R, variable viscosity ε, Darcy number Da, porous media inertia coefficient γ, thermal conductivity κ and unsteady A parameters on skin friction and Nusselt number.


Sign in / Sign up

Export Citation Format

Share Document