Release and redistribution of residual stress in the welded turbine rotor under service-type loadings

2015 ◽  
Vol 295 ◽  
pp. 500-510 ◽  
Author(s):  
Lei Feng ◽  
Fu-zhen Xuan
2002 ◽  
Vol 16 (01n02) ◽  
pp. 181-188 ◽  
Author(s):  
CHANG-MIN SUH ◽  
BYUNG-WON HWANG ◽  
KYUNG-RYUL KIM

To evaluate the effect of coatings on the fatigue behaviors of turbine rotor steel, TiN and TiAlN films were deposited on the 1Cr-1Mo-0.25V steels by arc-ion plating (AIP) method with and wihtout screen ion filter. The coating thickness were varied with 2.5 μm, 3.5 μm, and 5.0 μm. A Cu-K α beam source was used as a characteristic X-ray and the crystal plane of (422) was selected to evaluate the residual stresses. In order to clear the relationship between fatigue behavior and residual stress of specimen coated with TiN and TiAlN films, the fatigue tests of specimens with and without coating were carried out at room temperatures respectively. It is shown that the fatigue life of the coated specimen was longer than that of uncoated specimen. The compressive residual stresses on the coatings were higher, and the fatigue crack initiated at an inclusion in the substrate near bond interface. It is known that compressive residual stress caused by hard coating would retard the fatigue crack initiation on the specimen surface, and then led to fatigue strength and fatigue life increasing.


Author(s):  
J. Fang ◽  
H. M. Chan ◽  
M. P. Harmer

It was Niihara et al. who first discovered that the fracture strength of Al2O3 can be increased by incorporating as little as 5 vol.% of nano-size SiC particles (>1000 MPa), and that the strength would be improved further by a simple annealing procedure (>1500 MPa). This discovery has stimulated intense interest on Al2O3/SiC nanocomposites. Recent indentation studies by Fang et al. have shown that residual stress relief was more difficult in the nanocomposite than in pure Al2O3. In the present work, TEM was employed to investigate the microscopic mechanism(s) for the difference in the residual stress recovery in these two materials.Bulk samples of hot-pressed single phase Al2O3, and Al2O3 containing 5 vol.% 0.15 μm SiC particles were simultaneously polished with 15 μm diamond compound. Each sample was cut into two pieces, one of which was subsequently annealed at 1300° for 2 hours in flowing argon. Disks of 3 mm in diameter were cut from bulk samples.


2021 ◽  
Vol 160 ◽  
pp. 107336
Author(s):  
Ziqian Zhang ◽  
Gang Shi ◽  
Xuesen Chen ◽  
Lijun Wang ◽  
Le Zhou

2020 ◽  
Vol 21 (5) ◽  
pp. 505
Author(s):  
Yousef Ghaderi Dehkordi ◽  
Ali Pourkamali Anaraki ◽  
Amir Reza Shahani

The prediction of residual stress relaxation is essential to assess the safety of welded components. This paper aims to study the influence of various effective parameters on residual stress relaxation under cyclic loading. In this regard, a 3D finite element modeling is performed to determine the residual stress in welded aluminum plates. The accuracy of this analysis is verified through experiment. To study the plasticity effect on stress relaxation, two plasticity models are implemented: perfect plasticity and combined isotropic-kinematic hardening. Hence, cyclic plasticity characterization of the material is specified by low cycle fatigue tests. It is found that the perfect plasticity leads to greater stress relaxation. In order to propose an accurate model to compute the residual stress relaxation, the Taguchi L18 array with four 3-level factors and one 6-level is employed. Using statistical analysis, the order of factors based on their effect on stress relaxation is determined as mean stress, stress amplitude, initial residual stress, and number of cycles. In addition, the stress relaxation increases with an increase in mean stress and stress amplitude.


Sign in / Sign up

Export Citation Format

Share Document