scholarly journals K -series X-ray yield measurement of kaonic hydrogen atoms in a gaseous target

2016 ◽  
Vol 954 ◽  
pp. 7-16 ◽  
Author(s):  
M. Bazzi ◽  
G. Beer ◽  
G. Bellotti ◽  
C. Berucci ◽  
A.M. Bragadireanu ◽  
...  
2009 ◽  
Vol 24 (02n03) ◽  
pp. 190-197 ◽  
Author(s):  
◽  
J. ZMESKAL ◽  
M. BAZZI ◽  
G. BEER ◽  
L. BOMBELLI ◽  
...  

With precision X-ray spectroscopy of kaonic hydrogen at the DAΦNE electron-positron collider at Laboratori Nazionali di Frascati the chiral symmetry breaking scenario in the strangeness sector will be investigated by studying the K-p s-wave interaction at threshold. This is possible by observing the strong interaction induced shift and width of the 1s state in kaonic hydrogen atoms. The results of the first measurement at LNF with DEAR (DAΦNE Exotic Atom Research) will be given and the new SIDDHARTA (Silicon Drift Detector for Hadronic Atom Research with Timing Application) project will be described, which is aiming at a substantial improvement of the preceding DEAR result.


2004 ◽  
Vol 68 (5) ◽  
pp. 757-767 ◽  
Author(s):  
T. Mihajlović ◽  
H. Effenberger

AbstractHydrothermal synthesis produced the new compound SrCo2(AsO4)(AsO3OH)(OH)(H2O). The compound belongs to the tsumcorite group (natural and synthetic compounds with the general formula M(1)M(2)2(XO4)2(H2O,OH)2; M(1)1+,2+,3+ = Na, K, Rb, Ag, NH4, Ca, Pb, Bi, Tl; M(2)2+,3+ = Al, Mn3+, Fe3+, Co, Ni, Cu, Zn; and X5+,6+ = P, As, V, S, Se, Mo). It represents (1) the first Sr member, (2) the until now unknown [7]-coordination for the M(1) position, (3) the first proof of (partially) protonated arsenate groups in this group of compounds, and (4) a new structure variant.The crystal structure of the title compound was determined using single-crystal X-ray diffraction data. The compound is monoclinic, space group P21/a, with a = 9.139(2), b = 12.829(3), c = 7.522(2) Å, β = 114.33(3)°, V = 803.6(3) Å3, Z = 4 [wR2 = 0.065 for 3530 unique reflections]. The hydrogen atoms were located experimentally.


2013 ◽  
Vol 6 (1) ◽  
pp. 308 ◽  
Author(s):  
Mikael Elias ◽  
Dorothee Liebschner ◽  
Jurgen Koepke ◽  
Claude Lecomte ◽  
Benoit Guillot ◽  
...  

1965 ◽  
Vol 20 (9) ◽  
pp. 1117-1121 ◽  
Author(s):  
K. Möbius

The stereochemical structure of aromatic hydrocarbons in solution being overcrowded with hydrogen atoms is not known with certainty, because the conventional X-ray and electron diffraction methods are suitable only for samples in the crystalline and vapor phase. Using EPR spectroscopy for the aromatic hydrocarbon radicals biphenyl (—), phenanthrene (—) and pentaphenylcyclopentadienyl (PPCPD) innermolecular twist and bond angles could be determined by means of hfssplittings and g-factors. Stably solvated biphenyl radical ions are found to have twist angles of 38 ±2°; phenanthrene ions turn out to be planar but change their angles of hybridization at particular positions; in the PPCPD radical the phenyl rings oscillate with small amplitude around planes orthogonal to the five-membered ring.


2021 ◽  
Vol 19 ◽  
Author(s):  
Kikuko Iida ◽  
Toyokazu Muto ◽  
Miyuki Kobayashi ◽  
Hiroaki Iitsuka ◽  
Kun Li ◽  
...  

Abstract: X-ray crystal and Hirshfeld surface analyses of 2-hydroxy-7-methoxy-3-(2,4,6-trimethylbenzoyl)naphthalene and its 2-methoxylated homologue show quantitatively and visually distinct molecular contacts in crystals and minute differences in the weak intermolecular interactions. The title compound has a helical tubular packing, where molecules are piled in a two-folded head-to-tail fashion. The homologue has a tight zigzag molecular string lined up behind each other via nonclassical intermolecular hydrogen bonds between the carbonyl oxygen atom and the hydrogen atom of the naphthalene ring. The dnorm index obtained from the Hirshfeld surface analysis quantitatively demonstrates stronger molecular contacts in the homologue, an ethereal compound, than in the title compound, an alcohol, which is consistent with the higher melting temperature of the former than the latter. Stabilization through the significantly weak intermolecular nonclassical hydrogen bonding interactions in the homologue surpasses the stability imparted by the intramolecular C=O…H–O classical hydrogen bonds in the title compound. The classical hydrogen bond places the six-membered ring in the concave of the title molecule. The hydroxy group opposingly disturbs the molecular aggregation of the title compound, as demonstrated by the distorted H…H interactions covering the molecular surface, owing to the rigid molecular conformation. The position of effective interactions predominate over the strength of the classical/nonclassical hydrogen bonds in the two compounds.


2018 ◽  
Vol 181 ◽  
pp. 01004 ◽  
Author(s):  
A. Scordo ◽  
A. Amirkhani ◽  
M. Bazzi ◽  
G. Bellotti ◽  
C. Berucci ◽  
...  

The interaction of antikaons with nucleons and nuclei in the low-energy regime represents an active research field in hadron physics with still many important open questions. The investigation of light kaonic atoms, in which one electron is replaced by a negatively charged kaon, is a unique tool to provide precise information on this interaction; the energy shift and the broadening of the low-lying states of such atoms, induced by the kaon-nucleus hadronic interaction, can be determined with high precision from the atomic X-ray spectroscopy, and this experimental method provides unique information to understand the low energy kaon-nucleus interaction at the production threshold. The lightest atomic systems, like the kaonic hydrogen and the kaonic deuterium deliver, in a model-independent way, the isospin-dependent kaon-nucleon scattering lengths. The most precise kaonic hydrogen measurement to-date, together with an exploratory measurement of kaonic deuterium, were carried out in 2009 by the SIDDHARTA collaboration at the DAΦNE electron-positron collider of LNF-INFN, combining the excellent quality kaon beam delivered by the collider with new experimental techniques, as fast and very precise X-ray detectors, like the Silicon Drift Detectors. The SIDDHARTA results triggered new theoretical work, which achieved major progress in the understanding of the low-energy strong interaction with strangeness reflected by the antikaon-nucleon scattering lengths calculated with the antikaon-proton amplitudes constrained by the SIDDHARTA data. The most important open question is the experimental determination of the hadronic energy shift and width of kaonic deuterium; presently, a major upgrade of the setup, SIDDHARTA-2, is being realized to reach this goal. In this paper, the results obtained in 2009 and the proposed SIDDHARTA-2 upgrades are presented.


Electrochemical hydrogenation, lithiation and sodiation of the phases GdFe2–xMx and GdMn2–xMx (M=Mn, Co, Ni, Zn, and Mg) and the influence of doping components on electrochemical characteristics of electrode materials on their basis were studied using X-ray powder diffraction method, scanning electron microscopy, energy dispersive X-ray analysis, X-ray fluorescent spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Phase analysis showed a simple correspondence between unit cell parameters of the phases and atomic radii of doping elements. Electrode materials based on GdFe2 and GdMn2 doped with 2 at.% of Co, Ni and Mg demonstrated better hydrogen sorption properties than those doped with Mn and Zn. Corrosion resistance of the doped electrodes was also better than of the binary analogues (e.g. corrosion potential of the GdFe2-based electrode was –0.162 V whereas that of GdFe1.96Ni0.04 was –0.695 V). The capacity parameters were increased in the following ranges: Zn<Mn<Mg<Co<Ni and Zn<Fe<Mg<Co<Ni for GdFe2–xMx and GdMn2–xMx, respectively. After fifty cycles of charge/discharge, we observed the changes in surface morphology and composition of the electrode samples. In the structure of studied Laves type phases with MgCu2-type structure, the most suitable sites for hydrogen atoms are tetrahedral voids 8a. During lithiation and sodiation of the phases, the atoms of the M-component of the structure are replaced by the atoms of lithium, and the atoms of gadolinium are replaced by the atoms of sodium. This difference in interaction is due to the difference in atomic sizes of the atoms. No insertion of lithium or sodium into the structural voids of the phases was observed.


EXA 2011 ◽  
2011 ◽  
pp. 121-126
Author(s):  
Michael Cargnelli ◽  
M. Bazzi ◽  
G. Beer ◽  
C. Berucci ◽  
L. Bombelli ◽  
...  
Keyword(s):  

Molbank ◽  
10.3390/m1077 ◽  
2019 ◽  
Vol 2019 (3) ◽  
pp. M1077
Author(s):  
Lan ◽  
Zheng ◽  
Wang

The compound 2-(3,5-dimethyl-1H-pyrazol-1-yl)thiazolo[4,5-b]pyridine (1) was synthesized with a yield of 71% by the reaction of 1-(thiazolo[4,5-b]pyridine-2-yl)hydrazine and acetylacetone. The structure was characterized by a single-crystal X-ray structure determination as well as 1H and 13C{1H} NMR spectroscopy. X-ray crystallography on 1 confirms the molecule consists of a pyridine–thiazole moiety and the pyrazole ring, and all non-hydrogen atoms are planar.


Sign in / Sign up

Export Citation Format

Share Document