scholarly journals Nuclear equation of state for core-collapse supernova simulations with realistic nuclear forces

2017 ◽  
Vol 961 ◽  
pp. 78-105 ◽  
Author(s):  
H. Togashi ◽  
K. Nakazato ◽  
Y. Takehara ◽  
S. Yamamuro ◽  
H. Suzuki ◽  
...  
2019 ◽  
Vol 490 (4) ◽  
pp. 4622-4637 ◽  
Author(s):  
Hiroki Nagakura ◽  
Adam Burrows ◽  
David Radice ◽  
David Vartanyan

ABSTRACT Using our new state-of-the-art core-collapse supernova (CCSN) code Fornax, we explore the dependence upon spatial resolution of the outcome and character of three-dimensional (3D) supernova simulations. For the same 19 M⊙ progenitor star, energy and radial binning, neutrino microphysics, and nuclear equation of state, changing only the number of angular bins in the θ and ϕ directions, we witness that our lowest resolution 3D simulation does not explode. However, when jumping progressively up in resolution by factors of two in each angular direction on our spherical-polar grid, models then explode, and explode slightly more vigorously with increasing resolution. This suggests that there can be a qualitative dependence of the outcome of 3D CCSN simulations upon spatial resolution. The critical aspect of higher spatial resolution is the adequate capturing of the physics of neutrino-driven turbulence, in particular its Reynolds stress. The greater numerical viscosity of lower resolution simulations results in greater drag on the turbulent eddies that embody turbulent stress, and, hence, in a diminution of their vigor. Turbulent stress not only pushes the temporarily stalled shock further out, but bootstraps a concomitant increase in the deposited neutrino power. Both effects together lie at the core of the resolution dependence we observe.


2017 ◽  
Vol 44 (9) ◽  
pp. 094001 ◽  
Author(s):  
S Furusawa ◽  
H Togashi ◽  
H Nagakura ◽  
K Sumiyoshi ◽  
S Yamada ◽  
...  

2014 ◽  
Author(s):  
Shun Furusawa ◽  
Hiroki Nagakura ◽  
Kohsuke Sumiyoshi ◽  
Shoichi Yamada ◽  
Hideyuki Suzuki

2021 ◽  
Vol 923 (2) ◽  
pp. 201
Author(s):  
Oliver Eggenberger Andersen ◽  
Shuai Zha ◽  
André da Silva Schneider ◽  
Aurore Betranhandy ◽  
Sean M. Couch ◽  
...  

Abstract Gravitational waves (GWs) provide unobscured insight into the birthplace of neutron stars and black holes in core-collapse supernovae (CCSNe). The nuclear equation of state (EOS) describing these dense environments is yet uncertain, and variations in its prescription affect the proto−neutron star (PNS) and the post-bounce dynamics in CCSN simulations, subsequently impacting the GW emission. We perform axisymmetric simulations of CCSNe with Skyrme-type EOSs to study how the GW signal and PNS convection zone are impacted by two experimentally accessible EOS parameters, (1) the effective mass of nucleons, m ⋆, which is crucial in setting the thermal dependence of the EOS, and (2) the isoscalar incompressibility modulus, K sat. While K sat shows little impact, the peak frequency of the GWs has a strong effective mass dependence due to faster contraction of the PNS for higher values of m ⋆ owing to a decreased thermal pressure. These more compact PNSs also exhibit more neutrino heating, which drives earlier explosions and correlates with the GW amplitude via accretion plumes striking the PNS, exciting the oscillations. We investigate the spatial origin of the GWs and show the agreement between a frequency-radial distribution of the GW emission and a perturbation analysis. We do not rule out overshoot from below via PNS convection as another moderately strong excitation mechanism in our simulations. We also study the combined effect of effective mass and rotation. In all our simulations we find evidence for a power gap near ∼1250 Hz; we investigate its origin and report its EOS dependence.


Sign in / Sign up

Export Citation Format

Share Document