A new equation of state with light nuclei and their weak interactions in core-collapse supernova simulations

Author(s):  
Shun Furusawa ◽  
Hiroki Nagakura ◽  
Kohsuke Sumiyoshi ◽  
Shoichi Yamada ◽  
Hideyuki Suzuki
2017 ◽  
Vol 44 (9) ◽  
pp. 094001 ◽  
Author(s):  
S Furusawa ◽  
H Togashi ◽  
H Nagakura ◽  
K Sumiyoshi ◽  
S Yamada ◽  
...  

2017 ◽  
Vol 961 ◽  
pp. 78-105 ◽  
Author(s):  
H. Togashi ◽  
K. Nakazato ◽  
Y. Takehara ◽  
S. Yamamuro ◽  
H. Suzuki ◽  
...  

2020 ◽  
Vol 102 (5) ◽  
Author(s):  
Tobias Fischer ◽  
Stefan Typel ◽  
Gerd Röpke ◽  
Niels-Uwe F. Bastian ◽  
Gabriel Martínez-Pinedo

2011 ◽  
Vol 7 (S279) ◽  
pp. 333-334
Author(s):  
Shun Furusawa ◽  
Shoichi Yamada ◽  
Kohsuke Sumiyoshi ◽  
Hideyuki Suzuki

AbstractWe calculate a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to ~ 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores.


2011 ◽  
Vol 7 (S279) ◽  
pp. 397-398 ◽  
Author(s):  
Yudai Suwa

AbstractWe present two-dimensional numerical simulations of core-collapse supernova including multi-energy neutrino radiative transfer. We aim to examine the influence of the equation of state (EOS) for the dense nuclear matter. We employ four sets of EOSs, namely, those by Lattimer and Swesty (LS) and Shen et al., which became standard EOSs in the core-collapse supernova community. We reconfirm that not every EOS produces an explosion in spherical symmetry, which is consistent with previous works. In two-dimensional simulations, we find that the structure of the accretion flow is significantly different between LS EOS and Shen EOS, inducing an even qualitatively different evolution of the shock wave, namely, the LS EOS leads to shock propagation beyond 2000 km from the center, while the Shen EOS shows only oscillations within 500 km. The possible origins of the difference are discussed.


2013 ◽  
Author(s):  
Shun Furusawa ◽  
K. Sumiyoshi ◽  
Shoichi Yamada ◽  
Hideyuki Suzuki

Sign in / Sign up

Export Citation Format

Share Document