Erratum to: “Optimal renormalization-group improvement of two radiatively-broken gauge theories” [Nucl. Phys. B 678 (2004) 147]

2004 ◽  
Vol 703 (1-2) ◽  
pp. 413-415 ◽  
Author(s):  
V. Elias ◽  
R.B. Mann ◽  
D.G.C. McKeon ◽  
T.G. Steele
2001 ◽  
Vol 16 (11) ◽  
pp. 2101-2104 ◽  
Author(s):  
P. PANZA ◽  
R. SOLDATI

The Exact Renormalization Group (ERG) approach to massive gauge theories in the axial gauge is studied and the smoothness of the massless limit is analysed for a formally gauge invariant quantity such as the Euclidean Wilson loop.


2001 ◽  
Vol 16 (11) ◽  
pp. 2125-2130
Author(s):  
M. SIMIONATO

I study a class of Wilsonian formulations of non-Abelian gauge theories in algebraic noncovariant gauges where the Wilsonian infrared cutoff Λ is inserted as a mass term for the propagating fields. In this way the Ward-Takahashi identities are preserved to all scales. Nevertheless the BRS-invariance in broken and the theory is gauge-dependent and unphysical at Λ≠ 0. Then I discuss the infrared limit Λ→0. I show that the singularities of the axial gauge choice are avoided in planar gauge and in light-cone gauge. Finally the rectangular Wilson loop of size 2L×2T is evaluated at lowest order in perturbation theory and a noncommutativity between the limits Λ→0 and T→∞ is pointed out.


Universe ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 86 ◽  
Author(s):  
Vincent Lahoche ◽  
Dine Ousmane Samary

This manuscript aims at giving new advances on the functional renormalization group applied to the tensorial group field theory. It is based on the series of our three papers (Lahoche, et al., Class. Quantum Gravity 2018, 35, 19), (Lahoche, et al., Phys. Rev. D 2018, 98, 126010) and (Lahoche, et al., Nucl. Phys. B, 2019, 940, 190–213). We consider the polynomial Abelian U ( 1 ) d models without the closure constraint. More specifically, we discuss the case of the quartic melonic interaction. We present a new approach, namely the effective vertex expansion method, to solve the exact Wetterich flow equation and investigate the resulting flow equations, especially regarding the existence of non-Gaussian fixed points for their connection with phase transitions. To complete this method, we consider a non-trivial constraint arising from the Ward–Takahashi identities and discuss the disappearance of the global non-trivial fixed points taking into account this constraint. Finally, we argue in favor of an alternative scenario involving a first order phase transition into the reduced phase space given by the Ward constraint.


Sign in / Sign up

Export Citation Format

Share Document