Preparation and evaluation of bombesin peptide derivatives as potential tumor imaging agents: effects of structure and composition of amino acid sequence on in vitro and in vivo characteristics

2012 ◽  
Vol 39 (6) ◽  
pp. 795-804 ◽  
Author(s):  
Subhani M. Okarvi ◽  
Ibrahim A. Jammaz
Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6030
Author(s):  
Felicia Krämer ◽  
Benedikt Gröner ◽  
Chris Hoffmann ◽  
Austin Craig ◽  
Melanie Brugger ◽  
...  

Purpose: The preclinical evaluation of 3-l- and 3-d-[18F]FPhe in comparison to [18F]FET, an established tracer for tumor imaging. Methods: In vitro studies were conducted with MCF-7, PC-3, and U87 MG human tumor cell lines. In vivo µPET studies were conducted in healthy rats with/without the inhibition of peripheral aromatic l-amino acid decarboxylase by benserazide pretreatment (n = 3 each), in mice bearing subcutaneous MCF-7 or PC-3 tumor xenografts (n = 10), and in rats bearing orthotopic U87 MG tumor xenografts (n = 14). Tracer accumulation was quantified by SUVmax, SUVmean and tumor-to-brain ratios (TBrR). Results: The uptake of 3-l-[18F]FPhe in MCF-7 and PC-3 cells was significantly higher relative to [18F]FET. The uptake of all three tracers was significantly reduced by the suppression of amino acid transport systems L or ASC. 3-l-[18F]FPhe but not 3-d-[18F]FPhe exhibited protein incorporation. In benserazide-treated healthy rats, brain uptake after 42–120 min was significantly higher for 3-d-[18F]FPhe vs. 3-l-[18F]FPhe. [18F]FET showed significantly higher uptake into subcutaneous MCF-7 tumors (52–60 min p.i.), while early uptake into orthotopic U87 MG tumors was significantly higher for 3-l-[18F]FPhe (SUVmax: 3-l-[18F]FPhe, 107.6 ± 11.3; 3-d-[18F]FPhe, 86.0 ± 4.3; [18F]FET, 90.2 ± 7.7). Increased tumoral expression of LAT1 and ASCT2 was confirmed immunohistologically. Conclusion: Both novel tracers enable accurate tumor delineation with an imaging quality comparable to [18F]FET.


1977 ◽  
Author(s):  
F.J. Morgan ◽  
G.S. Begg ◽  
C.N. Chesterman

The amino acid sequence of human platelet factor 4 (PF4) has been studied. PF4 is a platelet specific protein with antiheparin activity, released from platelets as a proteoglycan complex, whose measurement may provide an important index of platelet activation both in vivo and in vitro. These studies were undertaken to characterize fully the PF4 molecule. PF4 is a stable tetramer, composed of identical subunits, each with a molecular weight based on the sequence studies of approx. 7,770. Each PF4 subunit contains 69 amino acids, including 4 half-cystine (# 10, 12, 36, 37), one tyrosine (# 59), 3 arginine and 8 lysine, but no methionine, phenylalanine or tryptophan residues. The basic residues are predominantly in the C-terminal region. The tryptic peptides were aligned after studies which included tryptic digestion of citraconylated RCM-PF4, and automated Edman degradation of RCM-PF4 and citraconylated tryptic peptides. No glycopeptides were detected. This structural information should enable clear distinction to be made between PF4 and other platelet proteins such as β thromboglobulin. The provisional amino acid sequence of each subunit is:Glu-Ala-Glu-Glu-Asp-Gly-Asp-Leu-Gln-Cys-Leu-Cys-Val-Lys-Thr-Thr-Ser-Gln-Val-Arg-Pro-Arg-His-Ile-Thr-Ser-Leu-Glu-Val-Ile-Lys-Ala-Gly-Pro-His-Cys-Cys-Pro-Thr-Ala-Gln-Ile-Leu-Ala-Thr-Leu-Lys-Asn-Gly-Arg-Lys-Ile-Pro-Leu-Asp-Leu-Gln-Ala-Tyr-Leu-Lys-Ile-Lys(Lys, Lys, Ser, Glx, Leu, Leu)


Microbiology ◽  
2010 ◽  
Vol 156 (9) ◽  
pp. 2796-2806 ◽  
Author(s):  
Vivienne Mahon ◽  
Cyril J. Smyth ◽  
Stephen G. J. Smith

The pathogenesis of diarrhoeal disease due to human enterotoxigenic Escherichia coli absolutely requires the expression of fimbriae. The expression of CS1 fimbriae is positively regulated by the AraC-like protein Rns. AraC-like proteins are DNA-binding proteins that typically contain two helix–turn–helix (HTH) motifs. A program of pentapeptide insertion mutagenesis of the Rns protein was performed, and this revealed that both HTH motifs are required by Rns to positively regulate CS1 fimbrial gene expression. Intriguingly, a pentapeptide insertion after amino acid C102 reduced the ability of Rns to transactivate CS1 fimbrial expression. The structure of Rns in this vicinity (NACRS) was predicted to be disordered and thus might act as a flexible linker. This hypothesis was confirmed by deletion of this amino acid sequence from the Rns protein; a truncated protein that lacked this sequence was no longer functional. Strikingly, this sequence could be functionally substituted in vivo and in vitro by a flexible seven amino acid sequence from another E. coli AraC-like protein RhaS. Our data indicate that HTH motifs and a flexible sequence are required by Rns for maximal activation of fimbrial gene expression.


Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 828 ◽  
Author(s):  
Jochen M. Wettengel ◽  
Benjamin J. Burwitz

Hepatitis B is a major global health problem, with an estimated 257 million chronically infected patients and almost 1 million deaths per year. The causative agent is hepatitis B virus (HBV), a small, enveloped, partially double-stranded DNA virus. HBV has a strict species specificity, naturally infecting only humans and chimpanzees. Sodium taurocholate co-transporting polypeptide (NTCP), a bile acid transporter expressed on hepatocytes, has been shown to be one of the key factors in HBV infection, playing a crucial role in the HBV entry process in vitro and in vivo. Variations in the amino acid sequence of NTCP can inhibit HBV infection and, therefore, contributes, in part, to the species barrier. This discovery has revolutionized the search for novel animal models of HBV. Indeed, it was recently shown that variations in the amino acid sequence of NTCP represent the sole species barrier for HBV infection in macaques. Here, we review what is known about HBV entry through the NTCP receptor and highlight how this knowledge has been harnessed to build new animal models for the study of HBV pathogenesis and curative therapies.


1998 ◽  
Vol 334 (3) ◽  
pp. 659-667 ◽  
Author(s):  
Christine RASCHER ◽  
Andreas PAHL ◽  
Anja PECHT ◽  
Kay BRUNE ◽  
Werner SOLBACH ◽  
...  

The immunosuppressive effects of the fungal metabolite cyclosporin A (CsA) are mediated primarily by binding to cyclophilins (Cyps). The resulting CsA–Cyp complex inhibits the Ca2+-regulated protein phosphatase calcineurin and down-regulates signal transduction events. Previously we reported that CsA is a potent inhibitor of infections transmitted by the human pathogenic protozoan parasite Leishmania major in vitro and in vivo, but does not effect the extracellular growth of L. major itself. It is unknown how L. major exerts this resistance to CsA. Here we report that a major Cyp, besides additional isoforms with the same N-terminal amino acid sequence, was expressed in L. major. The cloned and sequenced gene encodes a putative 174-residue protein called L. major Cyp 19 (LmCyp19). The recombinant LmCyp19 exhibits peptidyl-prolyl cis/trans isomerase activity with a substrate specificity and an inhibition by CsA that are characteristic of other eukaryotic Cyps. To determine whether calcineurin is involved in the discrimination of the effects of CsA we also examined the presence of a parasitic calcineurin and tested the interaction with Cyps. Despite the expression of functionally active calcineurin by L. major, neither LmCyp19 nor other L. major Cyps bound to its own or mammalian calcineurin. The amino acid sequence of most Cyps includes an essential arginine residue around the calcineurin-docking side. In LmCyp19 this is replaced by an asparagine residue. This exchange and additional charged residues are apparently responsible for the lack of LmCyp19 interaction with calcineurin. These observations indicate that resistance of L. major to CsA in vitro is mediated by the lack of complex formation with calcineurin despite CsA binding by parasitic Cyp.


2018 ◽  
Vol 1 (5) ◽  
pp. e201800148 ◽  
Author(s):  
Britta Seip ◽  
Guénaël Sacheau ◽  
Denis Dupuy ◽  
C Axel Innis

Although it is known that the amino acid sequence of a nascent polypeptide can impact its rate of translation, dedicated tools to systematically investigate this process are lacking. Here, we present high-throughput inverse toeprinting, a method to identify peptide-encoding transcripts that induce ribosomal stalling in vitro. Unlike ribosome profiling, inverse toeprinting protects the entire coding region upstream of a stalled ribosome, making it possible to work with random or focused transcript libraries that efficiently sample the sequence space. We used inverse toeprinting to characterize the stalling landscapes of free and drug-boundEscherichia coliribosomes, obtaining a comprehensive list of arrest motifs that were validated in vivo, along with a quantitative measure of their pause strength. Thanks to the modest sequencing depth and small amounts of material required, inverse toeprinting provides a highly scalable and versatile tool to study sequence-dependent translational processes.


2002 ◽  
Vol 184 (1) ◽  
pp. 241-249 ◽  
Author(s):  
Dinene L. Crater ◽  
Charles P. Moran

ABSTRACT GerE from Bacillus subtilis is the smallest member of the LuxR-FixJ family of transcription activators. Its 74-amino-acid sequence is similar over its entire length to the DNA binding domain of this protein family, including a putative helix-turn-helix (HTH) motif. In this report, we sought to define regions of GerE involved in promoter activation. We examined the effects of single alanine substitutions at 19 positions that were predicted by the crystal structure of GerE to be located on its surface. A single substitution of alanine for the phenylalanine at position 6 of GerE (F6A) resulted in decreased transcription in vivo and in vitro from the GerE-dependent cotC promoter. However, the F6A substitution had little effect on transcription from the GerE-dependent cotX promoter. In contrast, a single alanine substitution for the leucine at position 67 (L67A) reduced transcription from the cotX promoter, but not from the cotC promoter. The results of DNase I protection assays and in vitro transcription reactions lead us to suggest that the F6A and L67A substitutions define two regions of GerE, activation region 1 (AR1) and AR2, that are required for activation of the cotC and cotX promoters, respectively. A comparison of our results with those from studies of MalT and BvgA indicated that other members of the LuxR-FixJ family may use more than one surface to interact with RNA polymerase during promoter activation.


Sign in / Sign up

Export Citation Format

Share Document