Dynamics of internal waves in a stratified ocean modeled by the extended Gardner equation with time-dependent coefficients

2013 ◽  
Vol 70 ◽  
pp. 81-87 ◽  
Author(s):  
Sachin Kumar ◽  
K. Singh ◽  
R.K. Gupta
1996 ◽  
Vol 14 (2) ◽  
pp. 121-127
Author(s):  
Xu Zhao-ting ◽  
Lou Shun-li ◽  
Tian Ji-wei ◽  
Samuel Shan-pu Shen

Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 205
Author(s):  
Ekaterina Didenkulova ◽  
Efim Pelinovsky

Oscillating wave packets (breathers) are a significant part of the dynamics of internal gravity waves in a stratified ocean. The formation of these waves can be provoked, in particular, by the decay of long internal tidal waves. Breather interactions can significantly change the dynamics of the wave fields. In the present study, a series of numerical experiments on the interaction of breathers in the frameworks of the etalon equation of internal waves—the modified Korteweg–de Vries equation (mKdV)—were conducted. Wave field extrema, spectra, and statistical moments up to the fourth order were calculated.


2017 ◽  
Author(s):  
Oxana Kurkina ◽  
Tatyana Talipova ◽  
Tarmo Soomere ◽  
Ayrat Giniyatullin ◽  
Andrey Kurkin

Abstract. Spatial distributions of the main properties of the mode function and kinematic and nonlinear parameters of internal waves of the second mode are derived for the South China Sea for typical summer conditions in July. The calculations are based on the Generalized Digital Environmental Model (GDEM) climatology of hydrological variables. The focus is on the phase speed of long internal waves and the coefficients at the dispersive, quadratic and cubic terms of the weakly nonlinear Gardner model. Spatial distributions of these parameters, except for the coefficient at the cubic term, are qualitatively similar for waves of both modes. The dispersive term of Gardner equation and phase speed for internal waves of the second mode are about a quarter and half, respectively, of those for waves of the first mode. Similarly to the waves of the first mode, the coefficients at the quadratic and cubic terms of Gardner equation are practically independent of water depth. In contrast to the waves of the first mode, for waves of the second mode the quadratic term is mostly negative. The results can serve as a basis for express estimates of the expected parameters of internal waves for the South China Sea.


2014 ◽  
Vol 44 (9) ◽  
pp. 2498-2523 ◽  
Author(s):  
Olivier Marchal

Abstract This study examines the observability of a stratified ocean in a square flat basin on a midlatitude beta plane. Here, “observability” means the ability to establish, in a finite interval of time, the time-dependent ocean state given density observations over the same interval and with no regard for errors. The dynamics is linearized and hydrostatic, so that the motion can be decomposed into normal modes and the observability analysis is simplified. An observability Gramian (a symmetric matrix) is determined for the flows in an inviscid interior, in frictional boundary layers, and in a closed basin. Its properties are used to establish the condition for complete observability and to identify optimal data locations for each of these flows. It is found that complete observability of an oceanic interior in time-dependent Sverdrup balance requires that the observations originate from the westernmost location at each considered latitude. The degree of observability increases westward due to westward propagation of long baroclinic Rossby waves: data collected in the west are more informative than data collected in the east. Likewise, the best locations for observing variability in the western (eastern) boundary layer are near (far from) the boundary. The observability of a closed basin is influenced by the westward propagation and the boundaries. Optimal data locations that are identified for different resolutions (0.01 to 1 yr) and lengths of data records (0.2 to 20 yr) show a variable influence of the planetary vorticity gradient. Data collected near the meridional boundaries appear always less informative, from the viewpoint of basin observability, than data collected away from these boundaries.


2015 ◽  
Vol 4 (2) ◽  
pp. 169-180 ◽  
Author(s):  
M.S. Bruzon ◽  
M.L. Gandarias ◽  
R. de la Rosa

1966 ◽  
Vol 25 (1) ◽  
pp. 121-142 ◽  
Author(s):  
Paul H. LeBlond

The problem studied here is that of the attenuation of internal waves through turbulent mixing in a weakly and exponentially stratified fluid. The equations are linearized and it is assumed that the action of turbulence can be parametrically represented by eddy mixing coefficients and that the influence of bottom friction is restricted to a thin bottom boundary layer. The simple case where there is no rotation and only one component to the stratification is first examined in detail, and the modifications caused by introducing rotation and a second component are subsequently investigated. Subject quantitatively to the choice made for the eddy coefficients, but qualitatively not strongly dependent on that choice, the following conclusions are drawn: (i) very short internal waves (length < 100 m) are strongly damped in basins of all depths; (ii) long internal waves or seiches in shallow seas (depth ≃ 100 m) will not last more than a few cycles as free oscillations; (iii) the attenuation rate for long internal tides is small enough that these should be observable very far from the coasts, but large enough to exclude the possibility of oceanic standing wave systems; (iv) for very long internal waves the damping is predominantly due to the effect of bottom friction, and the attenuation rate becomes almost independent of the actual form of the stratification present in the fluid.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2434
Author(s):  
Ruixin Li ◽  
Lianzhong Li

In this paper, we employ the certain theory of Lie symmetry analysis to discuss the time-fractional Gardner equation with time-dependent coefficients. The Lie point symmetry is applied to realize the symmetry reduction of the equation, and then the power series solutions in some specific cases are obtained. By virtue of the fractional conservation theorem, the conservation laws are constructed.


Sign in / Sign up

Export Citation Format

Share Document