Water-wave diffraction and radiation by multiple three-dimensional bodies over a mild-slope bottom

2017 ◽  
Vol 143 ◽  
pp. 163-176 ◽  
Author(s):  
Pau Mercadé Ruiz ◽  
Francesco Ferri ◽  
Jens Peter Kofoed
Wave Motion ◽  
2004 ◽  
Vol 39 (2) ◽  
pp. 129-142 ◽  
Author(s):  
Wen-I Liao ◽  
Tsung-Jen Teng ◽  
Chau-Shioung Yeh

2021 ◽  
Author(s):  
Leonid I. Goray

Abstract The modified boundary integral equation method (MIM) is considered a rigorous theoretical application for the diffraction of cylindrical waves by arbitrary profiled plane gratings, as well as for the diffraction of plane/non-planar waves by concave/convex gratings. This study investigates two-dimensional (2D) diffraction problems of the filiform source electromagnetic field scattered by a plane lamellar grating and of plane waves scattered by a similar cylindrical-shaped grating. Unlike the problem of plane wave diffraction by a plane grating, the field of a localised source does not satisfy the quasi-periodicity requirement. Fourier transform is used to reduce the solution of the problem of localised source diffraction by the grating in the whole region to the solution of the problem of diffraction inside one Floquet channel. By considering the periodicity of the geometry structure, the problem of Floquet terms for the image can be formulated so that it enables the application of the MIM developed for plane wave diffraction problems. Accounting of the local structure of an incident field enables both the prediction of the corresponding efficiencies and the specification of the bounds within which the approximation of the incident field with plane waves is correct. For 2D diffraction problems of the high-conductive plane grating irradiated by cylindrical waves and the cylindrical high-conductive grating irradiated by plane waves, decompositions in sets of plane waves/sections are investigated. The application of such decomposition, including the dependence on the number of plane waves/sections and radii of the grating and wave front shape, was demonstrated for lamellar, sinusoidal and saw-tooth grating examples in the 0th & –1st orders as well as in the transverse electric and transverse magnetic polarisations. The primary effects of plane wave/section partitions of non-planar wave fronts and curved grating shapes on the exact solutions for 2D and three-dimensional (conical) diffraction problems are discussed.


Author(s):  
Ai-jun Li ◽  
Yong Liu

Abstract This article studies water wave diffraction and radiation by a submerged horizontal circular cylinder in front of a vertical wall under the assumption of linear potential flow theory. Based on the image principle, the hydrodynamic problem of a horizontal cylinder in front of a vertical wall is transformed into an equivalent problem involving symmetrical cylinders in a horizontally unbounded fluid domain. Then, analytical solutions for the present physical problem are developed using the method of multipole expansions combined with the shift of polar coordinate systems. The wave exciting forces on the cylinder as well as the added mass and radiation damping due to the cylinder oscillation are calculated. The analytical solutions converge very rapidly with the increasing truncated number of multipoles. Calculation examples are presented to examine the effects of different parameters on the hydrodynamic quantities of the cylinder. Results indicate that the hydrodynamic quantities of the cylinder in front of a vertical wall greatly differ from those in a horizontally unbounded fluid domain.


Sign in / Sign up

Export Citation Format

Share Document