Collapse pressure of randomly corroded spherical shell

2022 ◽  
Vol 246 ◽  
pp. 110604
Author(s):  
Zhongwei Zhao ◽  
Pingyi Zhang ◽  
Song Zhou ◽  
Xiongtao Fan
1967 ◽  
Vol 89 (3) ◽  
pp. 333-338 ◽  
Author(s):  
F. J. Witt ◽  
R. C. Gwaltney ◽  
R. L. Maxwell ◽  
R. W. Holland

A series of steel models having single nozzles radially and nonradially attached to a spherical shell is presently being examined by means of strain gages. Parameters being studied are nozzle dimensions, length of internal nozzle protrusions, and angles of attachment. The loads are internal pressure and axial thrust and moment loadings on the nozzle. This paper presents both experimental and theoretical results from six of the configurations having radially attached nozzles for which the sphere dimensions are equal and the outside diameter of the attached nozzle is constant. In some instances the nozzle protrudes through the vessel.


1980 ◽  
Vol 102 (1) ◽  
pp. 8-22 ◽  
Author(s):  
A. M. Hecht ◽  
H. Yeh ◽  
S. M. K. Chung

Collapse of arteries subjected to a band of hydrostatic pressure of finite length is analyzed. The vessel is treated as a long, thin, linearly elastic, orthotropic cylindrical shell, homogeneous in composition, and with negligible radial stresses. Blood in the vessel is treated as a Newtonian fluid and the Reynolds number is of order 1. Results are obtained for effects of the following factors on arterial collapse: intraluminal pressure, length of the pressure band, elastic properties of the vessel, initial stress both longitudinally and circumferentially, blood flow Reynolds number, compressibility, and wall thickness to radius ratio. It is found that the predominant parameter influencing vessel collapse for the intermediate range of vessel size and blood flow Reynolds numbers studied is the preconstricted intraluminal pressure. For pressure bands less than about 10 vessel radii the collapse pressure increases sharply with increasing intraluminal pressure. Initial axial prestress is found to be highly stabilizing for small band lengths. The effects of fluid flow are found to be small for pressure bands of less than 100 vessel radii. No dramatic orthotropic vessel behavior is apparent. The analysis shows that any reduction in intraluminal pressure, such as that produced by an upstream obstruction, will significantly lower the required collapse pressure. Medical implications of this analysis to Legg-Perthes disease are discussed.


Sign in / Sign up

Export Citation Format

Share Document