Analysis of shallow spherical shell with circular base under eccentrically applied concentrated loads

1981 ◽  
Vol 2 (6) ◽  
pp. 679-698 ◽  
Author(s):  
Pao Shih-hua ◽  
Long Yu-qiu
1962 ◽  
Vol 29 (4) ◽  
pp. 745-747 ◽  
Author(s):  
H. D. Conway ◽  
A. W. Leissa

Using Reissner’s [1] theory of the bending of shallow spherical shells, two unsymmetrical problems are investigated by the method of point-matching. The first is a uniformly loaded spherical shell clamped on a square base, numerical values of the moments and membrane forces being obtained and compared with the corresponding values for the case of a clamped circular base. The second problem is a spherical shell with a rigid elliptical insert, the latter carrying a central radial load. This gives information concerning the problem of a spherical shell which is pierced at an angle by a relatively rigid circular pipe.


1999 ◽  
Author(s):  
Hwan-Sik Yoon ◽  
Gregory Washington

Abstract In this study, a smart aperture antenna of spherical shape is modeled and experimentally verified. The antenna is modeled as a shallow spherical shell with a small hole at the apex for mounting. Starting from five governing equations of the shallow spherical shell, two governing equations are derived in terms of a stress function and the axial deflection using Reissner’s approach. As actuators, four PZT strip actuators are attached along the meridians separated by 90 degrees respectively. The forces developed by the actuators are considered as distributed pressure loads on the shell surface instead of being applied as boundary conditions like previous studies. This new way of applying the actuation force necessitates solving for the particular solutions in addition to the homogeneous solutions for the governing equations. The amount of deflections is evaluated from the calculated stress function and the axial deflection. In addition to the analytical model, a finite element model is developed to verify the analytical model on the various surface positions of the reflector. Finally, an actual working model of the reflector is built and tested in a zero gravity environment, and the results of the theoretical model are verified by comparing them to the experimental data.


1999 ◽  
Vol 8 (5) ◽  
pp. 579-584 ◽  
Author(s):  
V Jayachandran ◽  
Patrick King ◽  
Nancy E Meyer ◽  
Florence J Li ◽  
Maria Petrova ◽  
...  

1993 ◽  
Vol 115 (1) ◽  
pp. 70-74 ◽  
Author(s):  
D. N. Paliwal ◽  
V. Bhalla

Large amplitude free vibrations of a clamped shallow spherical shell on a Pasternak foundation are studied using a new approach by Banerjee, Datta, and Sinharay. Numerical results are obtained for movable as well as immovable clamped edges. The effects of geometric, material, and foundation parameters on relation between nondimensional frequency and amplitude have been investigated and plotted.


1974 ◽  
Vol 96 (3) ◽  
pp. 228-233
Author(s):  
P. Prakash ◽  
K. P. Rao

The problem of a circular elastic inclusion in a thin pressurized spherical shell is considered. Using Reissner’s differential equations governing the behavior of a thin shallow spherical shell, the solutions for the two regions are obtained in terms of Bessel and Hankel functions. Particular cases of a rigid circular inclusion free to move with the shell and a clamped rigid circular inclusion are also considered. Results are presented in nondimensional form which will greatly facilitate their use in the design of spherical shells containing a rigid or an elastic inclusion.


Author(s):  
Baosheng Dong ◽  
Xinwei Zhao ◽  
Hongda Chen ◽  
Jinheng Luo ◽  
Zhixin Chen ◽  
...  

The vaulted roofs of oil storage tank are usually designed as the shallow spherical shells subjecting to a uniform external pressure, which have been widely observed that these shallow spherical shells undergo various levels of corrosion in their employing conditions. It is important to assess the stability of these local weaken shallow spherical roofs due to corrosion for preventing them from occurring unexpected buckling failure. In this paper, the uniform eroded part of a shallow spherical oil tank vaulted roof is simplified as a shallow spherical shell with elastic supports. Based on the simplification, a general pathway to calculate the critical pressure of eroded shallow spherical shell is proposed. The modified iteration method considering large deflection of the shell is applied to solve the problem of nonlinear stability of the shallow spherical shells, and then the second-order approximate analytical solution is obtained. The critical pressure calculated by this method is consistent with the classical numerical results and nonlinear finite element method, and the calculation errors are less than 10%. It shows that it is feasible to apply the method proposed here.


Sign in / Sign up

Export Citation Format

Share Document